Расчет утеплителя для трубы онлайн калькулятор

Объем теплоизоляции – объем изоляции круглой поверхности по наружному диаметру

Калькулятор для расчета объема изоляции трубопроводов круглого сечения

Предлагаем Вам калькулятор для автоматизированного расчета объема изоляции для магистралей различного назначения – канализации, воздуховодов, отопления или газовых трубопроводов.

Перед тем как воспользоваться калькулятором для расчета объема изоляции трубопроводов, мы настоятельно рекомендуем предварительно ознакомиться с инструкцией.

Онлайн калькулятор для вычисления требуемого объема теплоизоляции для трубопроводов

В условиях нашей страны с ее огромными просторами трубопроводный транспорт является самым эффективным средством транспортировки жидких продуктов. Размеры труб при этом достигают трехметрового диаметра, что позволяет транспортировать по ним большие объемы продуктов. Естественно, что такие магистрали нуждаются в определенной защите от разных факторов:

  • коррозии всех видов;
  • промерзания;
  • физического воздействии природных явлений;
  • от несанкционированного вмешательства посторонних лиц.

Все магистрали, включая газопроводы и нефтепроводы, не говоря уже о водных системах, подлежат изолированию работы в температурном интервале -45 + 60 градусов.

Массовое применение такой технологической операции требует тщательного расчета потребности в материалах покрытия поверхности труб, чтобы расходы на нее были оптимальными, подсчет изоляции трубопроводов с использованием различных калькуляторов является необходимостью.

Изоляционные материалы

Гамма средств при устройстве изоляции весьма обширна. Их различие состоит как в способе нанесения на поверхности, так и по толщине слоя термоизоляции.

Особенности  нанесения каждого вида учтены калькуляторами для подсчета изоляции трубопроводов.

По-прежнему актуально использование различных материалов на основе битума с применением дополнительных армирующих изделий, например стеклоткани или стеклохолста.

Материал, называемый ППУ,  надежен и прочен, что позволяет его применение, как для канального, так и бесканального способа прокладки магистралей.

Используется также жидкий пенополиуретан, наносимой на поверхность по ходу монтажа, а также и другие материалы:

  • полиэтилен как многослойная оболочка, наносится в условиях промышленного производства для гидроизоляции;
  • стекловата различной толщины, эффективный утеплитель из-за своей невысокой стоимости при достаточной прочности;
  • для теплотрасс эффективно используются минеральные ваты расчетной толщины для утепления труб различных диаметров.

Монтаж изоляции

Расчет количества изоляции во многом зависит от способа ее нанесения. Это зависит от места применения – для внутреннего или наружного изолирующего слоя. Его можно выполнить самостоятельно или использовать программу – калькулятор для расчета теплоизоляции трубопроводов.

Покрытие по наружной поверхности используется для водяных трубопроводов горячего водоснабжения при высокой температуре с целью ее защиты от коррозии.

Расчет при таком способе сводится к определению площади наружной поверхности водопровода, для определения потребности на погонный метр трубы.

Выбор материала зависит от способа прокладки – канальный или бесканальный. В первом случае на дне отрытой траншее размещаются бетонные лотки, для размещения.

Полученные желоба закрываются бетонными же крышками, после чего канал заполняется ранее вынутым грунтом.

Бесканальная прокладка используется, когда рытье теплотрассы не представляется возможным. Для этого нужно специальное  инженерное оборудование. Расчет объема тепловой изоляции трубопроводов в онлайн-калькуляторах является достаточно точным средством, позволяющим рассчитать количество материалов без возни со сложными формулами. Нормы расхода материалов приводятся в соответствующих СНиП.

Варианты изоляции трубопровода

Напоследок рассмотрим три эффективных способа теплоизоляции трубопроводов.

Возможно, какой-то из них вам приглянется:

  1. Утепление с применением обогревающего кабеля. Помимо традиционных методов изоляции, есть и такой альтернативный способ. Использование кабеля весьма удобно и продуктивно, если учитывать, что защищать трубопровод от замерзания нужно всего лишь полгода. В случае обогрева труб кабелем происходит значительная экономия сил и денежных средств, которые пришлось бы потратить на земельные работы, утеплительный материал и прочие моменты. Инструкция по эксплуатации допускает нахождение кабеля как снаружи труб, так и внутри них.

Дополнительная теплоизоляция греющим кабелем

  1. Утепление воздухом. Ошибка современных систем теплоизоляции заключается вот в чем: зачастую не учитывается то, что промерзание грунта происходит по принципу «сверху вниз». Навстречу же процессу промерзания стремится поток тепла, исходящий из глубины земли. Но так как утепление производят со всех сторон трубопровода, получается, также изолирую его и от восходящего тепла. Поэтому рациональнее монтировать утеплитель в виде зонтика над трубами. В таком случае воздушная прослойка будет являться своеобразным теплоаккумулятором.
  2. «Труба в трубе». Здесь в трубах из полипропилена прокладываются еще одни трубы. Какие преимущества есть у этого способа? В первую очередь к плюсам относится то, что трубопровод можно будет отогреть в любом случае. Кроме того, возможен обогрев при помощи устройства по всасыванию теплого воздуха. А в аварийных ситуациях можно быстро протянуть аварийный шланг, тем самым предотвратив все отрицательные моменты.

Изоляция по принципу «труба в трубе»

Введите данные в онлайн калькулятор для расчёта

Перед использованием калькулятора прочтите инструкцию.

Рассчитанную тепловую мощность рекомендуется увеличить на 20% для покрытия неучтенных обстоятельств, что и предусмотрено в предлагаемом расчёте. Для того, чтобы система водяного отопления правильно функционировала, необходимо обеспечить нужную скорость теплоносителя в системе.

  • Скорости продвижения воды в трубопроводах рекомендуется в пределах от 0,3 до 1.5 м/сек;
  • при скорости меньшей 0.3 м/сек в системе могут появляться воздушные пробки;
  • при скорости большей 1.5 м/сек – гидравлические шумы. Таким образом,оптимальная скорость продвижения воды в трубопроводах находится в пределах от 0,4 до 1 м/с.

Для расчёта потерь давления кроме диаметра и длины трубопровода в нашем онлайн калькуляторе, необходимо также задать материал труб, эквивалентная шероховатость которых определяет затраты на преодоление трения жидкости о стенки труб; полученный результат умножается на коэффициент 1.2 для учета гидравлического сопротивления отводов, поворотов, кранов и других элементов трубопровода.

Изоляционные материалы

Гамма средств при устройстве изоляции весьма обширна.

Их различие состоит как в способе нанесения на поверхности, так и по толщине слоя термоизоляции. Особенности нанесения каждого вида учтены калькуляторами для подсчета изоляции трубопроводов. По-прежнему актуально использование различных материалов на основе битума с применением дополнительных армирующих изделий, например стеклоткани или стеклохолста.

Более экономичными и прочными являются полимерно-битумные составы.

Они позволяют вести быстрый монтаж а качество покрытия при этом получается долговечным и эффективным. Материал, называемый ППУ, надежен и прочен, что позволяет его применение, как для канального, так и бесканального способа прокладки магистралей. Используется также жидкий пенополиуретан, наносимой на поверхность по ходу монтажа, а также и другие материалы:

  • полиэтилен как многослойная оболочка, наносится в условиях промышленного производства для гидроизоляции;стекловата различной толщины, эффективный утеплитель из-за своей невысокой стоимости при достаточной прочности;для теплотрасс эффективно используются минеральные ваты расчетной толщины для утепления труб различных диаметров.

СМЕТА МДС 2021

Программа для составления смет на строительство и проверки сметной документации

ГОСУДАРСТВЕННЫЕ СМЕТНЫЕ НОРМАТИВЫ

ГОСУДАРСТВЕННЫЕ ЭЛЕМЕНТНЫЕ СМЕТНЫЕ НОРМЫ НА СТРОИТЕЛЬНЫЕ И СПЕЦИАЛЬНЫЕ СТРОИТЕЛЬНЫЕ РАБОТЫ ГЭСН-2001

Государственные сметные нормативы. Государственные элементные сметные нормы на строительные и специальные строительные работы (далее — ГЭСН) предназначены для определения потребности в ресурсах (затрат труда рабочих-строителей, машинистов, времени эксплуатации строительных машин и механизмов, материальных ресурсов) при выполнении строительных и специальных строительных работ и для составления на их основе сметных расчетов (смет) на производство указанных работ ресурсным и ресурсно-индексным методами. ГЭСН являются исходными нормами для разработки других сметных нормативов: единичных расценок федерального, территориального и отраслевого уровней, индивидуальных и укрупненных сметных нормативов. Утверждены и внесены в федеральный реестр сметных нормативов, подлежащих применению при определении сметной стоимости объектов капитального строительства, строительство которых финансируется с привлечением средств федерального бюджета Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 30.01.2014 г. N 31/пр (в ред. Приказа Минстроя России от 07.02.2014 г. N 39/пр).

Теплоизоляционные работы

2.26. Исчисление объемов работ при использовании ГЭСН части 26 «Теплоизоляционные работы».

2.26.1. Объем изоляции «в деле» (Ои)м 3 , приходящийся на 1 м длины трубопроводов или оборудования цилиндрической формы, исчисляется по формуле:

где Т — толщина изоляционного слоя, м; Д — наружный диаметр трубопровода или оборудования, м.

2.26.2. Длина изолируемых трубопроводов, а также оборудования цилиндрического и прямоугольного сечений и т.п. определяется по осевой линии для каждого сечения, причем арматура и фланцы, фитинги и т.д. из длины не исключаются.

2.26.3. Периметр многоугольного и подобного сечения определяется как среднеарифметическая величина периметров внутренней и наружной поверхности изоляции.

2.26.4. Объем изоляции отдельных мест у контрольно-измерительных приборов и арматуры, а также возле всякого рода люков, штуцеров, отверстий на оборудовании учтен нормами, при этом длина изолируемых трубопроводов измеряется без вычета указанных мест.

2.26.5. Объем работ по изоляции холодных поверхностей строительных конструкций определяется умножением площади изолируемой поверхности на толщину изоляции согласно проекту. Объем противопожарных поясов в объем изоляции не включается, т.к. их устройство предусмотрено отдельно (табл.26-01-37, 26-01-40).

2.26.6. Объем работ по изоляции безбалочных перекрытий снизу плитными утеплителями следует исчислять раздельно для перекрытий и для колонн, при этом изоляция капителей должна учитываться в объеме изоляции перекрытий.

2.26.7. Объем работ по отделке изоляции «в деле» — штукатурке, оклейке, покрытию, установке каркаса, сетки, а также по окраске изоляции должен исчисляться по наружной поверхности отделки.

2.26.8. Объем работ по покрытию изоляции (Оп)м 2 , приходящийся на 1 м длины трубопроводов или оборудования цилиндрической формы, исчисляется по формуле:

где Д — наружный диаметр трубопровода или оборудования, м; Т — толщина изоляционного слоя, м.

2.26.9. Объем работ по отделке (покрытию) изоляции (Оо)м 2 , приходящийся на 1 м 3 изоляции, определяется по формуле:

,

где Д — наружный диаметр трубопровода или оборудования, м; Т — толщина изоляционного слоя, м.

2.26.10. В нормах табл.26-01-045 площадь изолируемой поверхности стен надлежит исчислять за вычетом проемов по наружному обводу коробок. При наличии в проеме двух коробок площадь проема исчислять по обводу наружной коробки.

2.26.11. В нормах табл.26-01-045 площадь изолируемых архитектурных деталей (пилястры, полуколонны, карнизы, парапеты, эркеры, лоджии, пояски и т.п.) следует включать в общую площадь изолируемой поверхности стен.

Источник

Калькулятор расхода рулонной битумной изоляции для труб

Как правильно рассчитать расход гидроизоляции на трубу.

Для гидроизоляции трубы усиленного и/или весьма усиленного типа мы будем применять такие материалы:

  1. Грунтовка асмольная жидкая.
  2. Битумно-полимерная (или аналоги) лента с липким слоем.

Перед началом нанесения изоляции нам нужно понимать как правильно рассчитать расход изоляции (ленты и праймера) на изолируемый участок трубопровода.

Исходные данные необходимые для расчета:

  1. Диаметр трубы.
  2. Протяженность участка.
  3. Тип изоляции согласно ГОСТ / ДСТУ: усиленный или весьма усиленный тип.

Расчет изоляции на трубу — формула.

Рассчитаем площадь поверхности трубы по формуле:

S = π × d × h

  • S — площадь поверхности участка трубы.
  • π ≈ 3,14
  • d — диаметр трубы.
  • h — длина участка трубы.

Расход битумной ленты толщиной в 1,8 мм на 1 метр квадратный.

Весьма усиленная гидроизоляция (ВУС):

m = S × 4 кг/м² — расход ленты на квадрат поверхности ВУС изоляции

Усиленная гидроизоляция (УС):

m = S × 2,5 кг/м² — расход ленты для изоляции усиленного типа

  • m — масса ленты.
  • S — площадь изолируемой поверхности.

Расход грунтовки (праймера) в обеих случаях рассчитывается из расхода 300 мл/м².

Важно: расчеты совпадают с фактическим объемом материалов при условии соблюдения технологии нанесения изоляции. А именно:

  • лента для ВУС изоляции наносится в нахлест 50% за один проход;
  • лента для ВУ изоляции наносится в нахлест от 5% до 10%, образуя узкую полосу нахлеста на стыках;
  • грунтовка наносится лишь на поверхность трубы (металла) тонким ровным слоем до 2 мм.

Формула для подсчета объема изоляции трубопровода

Выполняем работы по составлению ведомостей объёмов работ, спецификаций материалов теплоизоляционных работ. Свои вопросы можно задать по электронной почте: smet-consulting@mail.ru

Для быстрого и точного расчёта (пересчёта) калькуляторов после ввода данных нажмите Enter.
Для разделения целой и дробной части числа необходимо использовать точку. Например, труба диаметром 101.3 мм.

Результаты расчётов

№ расчета Исходные данные Объем теплоизоляции, м³ Площадь покрытия, м²

Изоляция трубопроводов необходима для того, чтобы значительно снизить теплопотери.

Предварительно нужен расчет объема изоляции трубопроводов. Это позволит не только оптимизировать затраты, но и обеспечить грамотное выполнение работ, поддержание труб в надлежащем состоянии.

Правильно выбранный материал позволяет предотвратить коррозию, улучшить теплоизоляцию.

Схема изоляции труб.

Сегодня для защиты трасс можно применять разные типы покрытий. Но необходимо учитывать, как именно и где будут проходить коммуникации.

Расчеты выполняются разными методами, все зависит от выбранного типа покрытия.

Виды изоляционных материалов

Для выполнения изоляции трубопроводов используются различные материалы. Они отличаются по типу нанесения, толщине слоя и по своим характеристикам. К выбору следует относиться внимательно. Битумные покрытия еще не так давно считались самыми востребованными.

В некоторых случаях трубу может дополнительно защищать стеклохолст. Битумные материалы используются для теплоизоляции подземных линий. Они препятствуют возникновению коррозии.

Рабочие условия следующие: при обычной наружной прокладке -40/+65°C, для подземного глубинного использования -5/+30°C.

Таблица изоляции медных и стальных труб.

ППУ — надежный и прочный материал, который может быть использован во время бесканальной или канальной прокладки коммуникаций, для надземного трубопровода. Получается прокладка «труба в трубе». Процесс работ простой, с ним справится даже новичок.

Пенополиуретан в жидком виде наносится на поверхность, после чего он застывает, образуя прочную и крепкую скорлупу.

Антикоррозионная, полиэтиленовая изоляция — это многослойное покрытие, которое наносится только в промышленных условиях. Такие трубы применяются для транспортировки нефтепродуктов, газовых смесей. Стекловата сегодня применяется тоже часто.

Материал может использоваться для утепления труб с разным диаметром.

Методика просчета однослойной теплоизоляционной конструкции

Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:


Формула расчета теплоизоляции труб.

ln B = 2πλ [K(tт — tо) / qL — Rн]

В этой формуле:

  • λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
  • K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
  • tт — температура в градусах транспортируемой среды или теплоносителя;
  • tо — температура наружного воздуха, ⁰C;
  • qL — величина теплового потока, Вт/м2;
  • Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.

Таблица 1

Условия прокладки трубы Значение коэффициента К
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. 1.2
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. 1.15
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. 1.05
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. 1.7
Бесканальный способ прокладки. 1.15

Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.

Таблица 2

Rн,(м2 ⁰C) /Вт DN32 DN40 DN50 DN100 DN125 DN150 DN200 DN250 DN300 DN350 DN400 DN500 DN600 DN700
tт = 100 ⁰C 0.12 0.10 0.09 0.07 0.05 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.017 0.015
tт = 300 ⁰C 0.09 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.015 0.013
tт = 500 ⁰C 0.07 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.016 0.014 0.012

Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.

Показатель В следует рассчитывать отдельно:


Таблица тепловых потерь при разной толщине труби и теплоизоляции.

B = (dиз + 2δ) / dтр, здесь:

  • dиз — наружный диаметр теплоизоляционной конструкции, м;
  • dтр — наружный диаметр защищаемой трубы, м;
  • δ — толщина теплоизоляционной конструкции, м.

Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.

Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:

δ = [K(tт — tо) / qF — Rн]

В этой формуле:

  • δ — толщина теплоизоляционной конструкции, м;
  • qF — величина нормируемого теплового потока, Вт/м2;
  • остальные параметры — как в расчетной формуле для цилиндрической поверхности.

Метод определения по заданной температуре поверхности утепляющего слоя

Данное требование актуально на промышленных предприятиях, где различные трубопроводы проходят внутри помещений и цехов, в которых работают люди. В этом случае температура любой нагретой поверхности нормируется в соответствии с правилами охраны труда во избежание ожогов. Расчет толщины теплоизоляционной конструкции для труб диаметром свыше 2 м выполняется в соответствии с формулой:

Формула определения толщины теплоизоляции.

δ = λ (tт — tп) / ɑ (tп — t), здесь:

  • ɑ — коэффициент теплоотдачи, принимается по справочным таблицам, Вт/(м2 ⁰C);
  • tп — нормируемая температура поверхности теплоизоляционного слоя, ⁰C;
  • остальные параметры — как в предыдущих формулах.

Расчет толщины утеплителя цилиндрической поверхности производится с помощью уравнения:

ln B =(dиз + 2δ) / dтр = 2πλ Rн (tт — tп) / (tп — t)

Обозначения всех параметров как в предыдущих формулах. По алгоритму данный просчет схож с вычислением толщины утеплителя по заданному тепловому потоку. Поэтому дальше он выполняется точно так же, конечное значение толщины теплоизоляционного слоя δ находят так:

δ = dиз (B — 1) / 2

Предложенная методика имеет некоторую погрешность, хотя вполне допустима для предварительного определения параметров утепляющего слоя. Более точный расчет выполняется методом последовательных приближений с помощью персонального компьютера и специализированного программного обеспечения.

Соответствие параметров и материала утеплителя требованиям СНиП

Схема изоляции трубы скорлупой ППУ.

Расчет изоляции для технологических или сетевых трубопроводов по методу нормируемой плотности теплового потока предполагает, что его значение qL известно. В таблицах и приложениях к СНиП 41-03-2003 приведены эти значения, как и величины коэффициента К дополнительных потерь. Следует правильно пользоваться этими таблицами, так как они составлены для объектов, находящихся в европейском регионе Российской Федерации. Для определения нормируемого теплового потока трубопроводов, строящихся в других регионах, его значение необходимо умножать на специально введенный для этого коэффициент. В приложении СНиП указаны величины этих коэффициентов для каждого региона с учетом способа прокладки трубопровода.

При выборе изоляции трубопроводов различного назначения нужно обращать внимание на материал, из которого она изготовлена. Нормативная документация регламентирует применение горючих материалов разных групп горючести. Например, теплоизоляционные изделия группы горючести Г3 и Г4 не допускается применять на объектах:

Например, теплоизоляционные изделия группы горючести Г3 и Г4 не допускается применять на объектах:

  1. В наружном технологическом оборудовании, исключая те установки, которые стоят отдельно.
  2. При совместной прокладке с другими трубопроводами, которые перемещают горючие газы или жидкости.
  3. При общей прокладке в одном тоннеле или эстакаде с электрическими кабелями.
  4. Запрещено применять такие утеплители на трубопроводах внутри зданий. Исключение — здания IV степени огнестойкости.

http://ostroymaterialah.ru/youtu.be/TBPGadweXEg

В противном случае вычисления придется производить несколько раз.

Система теплоизоляции WDVS

Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.

Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.

Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая — тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.

Таблица, где: 1 — географическая точка 2 — средняя температура отопительного периода 3 — продолжительность отопительного периода в сутках 4 — градусо-сутки отопительного периода Dd, °С * сут 5 — нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 — требуемая толщина утеплителя

 Условия выполнения расчётов для таблицы:

1. Расчёт основывается на требованиях СНиП 23-02-2003 2. За пример расчёта взята группа зданий 1 — Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития. 3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С) 4. Коэффициент теплопроводности берётся для зон А. 5. Расчётная температура внутреннего воздуха помещения + 21 °С «жилая комната в холодный период года» (ГОСТ 30494-96) 6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места 7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений: R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв — сопротивление теплообмену у внутренней поверхности конструкции Rн — сопротивление теплообмену у наружной поверхности конструкции Rв.п — сопротивление теплопроводности воздушной прослойки (20 мм) Rн.к — сопротивление теплопроводности несущей конструкции Rо.к — сопротивление теплопроводности ограждающей конструкции R = d/l d — толщина однородного материала в м, l — коэффициент теплопроводности материала, Вт/(м * °С) R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l dу — толщина теплоизоляции R0 = Rreq Формула расчёта толщины утеплителя для данных условий: dу = l * ( Rreq — 0,832 )

а) — за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм б) — коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний) в) — коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)

* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».

* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.

Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.

Понравилась статья? Поделиться с друзьями:
Стильный дом
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: