Программа Instal-Therm HCR
Программа Instal-Therm HCR предоставляет возможность рассчитать обогрев поверхностей и радиаторы. Она предлагается в комплекте программы Тесе, в которой содержится программа для расчета тепловых потерь, сканирование чертежей и проектирование разных типов водоснабжения. Программа оснащена разнообразными каталогами, которые содержат фитинги, теплоизоляцию, батареи и различную арматуру.
Расчет системы отопления предоставляется в виде спецификаций.
Программный результат расчета предоставляет следующие возможности:
- выбор трубопроводной линии, что позволяет сделать расчет диаметра трубопровода;
- выбор батарей;
- определение высоты для размещения насосного оборудования;
- вычисление значений отопительных поверхностей;
- вычисление температурного значения.
Схема отопления двухэтажного дома
Данная программа не предусматривает функции вывода на печать. В бесплатной версии предоставляется возможность сделать три проекта.
Расчет давления в трубопроводе считается важной составляющей схемы регулирования. Чтобы правильно подобрать регулирующую арматуру потребуются точные данные
От этого зависит работа конструкции.
Программа расчета противодымной вентиляции Fans 400
fans 400
Программа Fans 400 создана для расчета противодымной вентиляции помещений. С ее помощью можно определить показатели системы удаления дыма из холлов, коридоров и вестибюлей. Программа для расчета противодымной вентиляции помогает подобрать мощность вентиляторов и другого специального оборудования.
Fans 400 создана для инженеров-проектировщиков, пожарных инспекторов и студентов профильных специальностей.
Использование для расчетов противодымной вентиляции не вызовет сложностей у пользователя любого уровня подготовки. Она распространяется бесплатно. Для корректной работы программы к компьютеру необходимо подключить принтер.
Методика расчета отопления дома
Чтобы самостоятельно рассчитать теплопотери дома, нужно воспользоваться одним из следующих наборов формул:
- Сопротивление теплопередаче ограждающих конструкций определяется по формуле R = B / K, где R — тепловое сопротивление; K – коэффициент тепловой проводимости материалов; В — толщина строительного материала. Определив сопротивление теплопередаче можно приступить к расчету непосредственно теплопотери дома Q = S × dT / R, где Q — это теплопотеря; S — площадь ограждающей конструкции; dT — разница температур внутри и снаружи помещения; R — сопротивление теплопередаче.
- Более точное значение теплопотерь дома можно получить по формуле Q = 0,1 × Sk × k1 × … × kn, где Q — теплопотеря дома; Sk — площадь помещения; k1 — kn — поправочные коэффициенты для корректировки результата с учетом особенностей помещения; 0,1 — базовое значение удельной тепловой мощности = 100 Вт = 0,1 кВт.
В представленном выше калькуляторе отопления дома использована вторая формула с поправочными коэффициентами. Рассмотрим подробно каждый коэффициент.
к1 коэффициент, учитывающий качество остекления:
Конструкция окна (стеклопакета) | Значение k1 |
В помещении нет окон | 0,6 |
Тройной стеклопакет | 0,85 |
Двойной стеклопакет | 1,0 |
Обычное (двойное) остекление | 1,27 |
к2 коэффициент, учитывающий качество теплоизоляции стен:
Теплоизоляция внешних стен помещения | Значение k2 |
Хорошая теплоизоляция | 0,85 |
Средняя теплоизоляция (два кирпича или 200 мм дерева) | 0,85 |
Плохая теплоизоляция | 1,27 |
к3 коэффициент, учитывающий площадь остекления помещения:
Площадь остекления в зависимости от площади помещения | Значение k3 |
10% | 0,8 |
20% | 0,9 |
30% | 1,0 |
40% | 1,1 |
50% | 1,2 |
к4 коэффициент, учитывающий разность температур внутри и снаружи помещения:
Температура снаружи помещения | Значение k4 |
-10°C | 0,7 |
-15°C | 0,7 |
-20°C | 1,1 |
-25°C | 1,3 |
-30°C | 1,5 |
-35°C | 1,7 |
к5 коэффициент, учитывающий число стен в помещении выходящих на улицу:
Количество стен выходящих на улицу | Значение k5 |
Одна стена | 1,0 |
Две стены | 1,2 |
Три стены | 1,3 |
Четыре стены | 1,4 |
к6 коэффициент, учитывающий помещения над рассчитываемым:
Помещение над рассчитываемым | Значение k6 |
Обогреваемое помещение | 0,8 |
Теплый чердак | 0,9 |
Холодный чердак | 1,0 |
к7 коэффициент, учитывающий высоту помещения:
Высота помещения | Значение k7 |
2,5 метра | 1,0 |
3,0 метра | 1,05 |
3,5 метра | 1,1 |
4,0 метра | 1,15 |
4,5 метра | 1,2 |
Выбрав соответствующие параметры помещения можно с легкостью рассчитать теплопотери каждого помещения. Суммируя показатели каждого помещения, вы получите общие теплопотери дома. Остается только определится с мощностью (теплопроизводительностью) котла. Для этого к общим теплопотерям дома необходимо добавить 15 — 20 % резерв. Эта упрощенная методика применена в рассмотренном выше калькуляторе расчета отопления дома.
Есть и другой способ подбора мощности отопительного котла. По нормативам СНиП на каждые 10 м² используется 1 кВт мощности с учетом 10% запаса. Такой вариант расчетов возможен только для стандартных помещений с хорошей теплоизоляцией и высотой потолков не выше 3 м. Для более точных расчетов используется формула:
MK = S × YMK / 10 (кВт), где:
- MK — мощность котла.
- S — площадь отапливаемого помещения.
- УМК — удельная мощность котла на 10 м² площади дома, которая рассчитывается в соответствии с климатическими условиями в конкретном регионе.
- Деление на 10 производится, так как УМК дается на 10 м² площади.
Удельная мощность котла с учетом климатических зон:
Регионы | УМК |
Южные регионы | 0,7 — 0,9 кВт |
Регионы с умеренным климатом (средняя полоса) | 1,0 — 1,2 кВт |
Москва и Подмосковье | 1,2 — 1,5 кВт |
Северные регионы | 1,5 — 2,0 кВт |
Последовательность выполнения гидравлического расчета
1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.
Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.
В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.
2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:
а) заданный расход воды;
б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.
Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.
3. Определяется расчетное циркуляционное давление по формуле
, (5.1)
где– давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное
, (5.2)
где
– сумма длин участков главного циркуляционного кольца;
– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как
, (5.3)
где– расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.
Значение коэффициента можно определить из табл.5.1.
Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления
(),C |
, кг/(м3К) |
85-65 |
0,6 |
95-70 |
0,64 |
105-70 |
0,66 |
115-70 |
0,68 |
– естественное давление, возникающее в результате охлаждения воды в трубопроводах .
В насосных системах с нижней разводкой величинойможно пренебречь.
-
Определяются удельные потери давления на трение
, (5.4)
где к=0,65 определяет долю потерь давления на трение.
5. Расход воды на участке определяется по формуле
(5.5)
гдеQ – тепловая нагрузка на участке, Вт:
(tг – tо) – разность температур теплоносителя.
6. По величинамиподбираются стандартные размеры труб .
6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.
При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.
7. Определяются потери давления на трение на расчетном участке, Па:
. (5.6)
Результаты расчета заносят в табл.5.2.
8. Определяются потери давления в местных сопротивлениях, используя или формулу:
, (5.7)
где– сумма коэффициентов местных сопротивлений на расчетном участке .
Значение ξ на каждом участке сводят в табл. 5.3.
Таблица 5.3 – Коэффициенты местных сопротивлений
№ п/п |
Наименования участков и местных сопротивлений |
Значения коэффициентов местных сопротивлений |
Примечания |
9. Определяют суммарные потери давления на каждом участке
. (5.8)
10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце
. (5.9)
11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на
. (5.10)
Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.
Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.
12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.
Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.
Таблица 5.2 – Результаты гидравлического расчета для системы отопления
На схеме трубопровода |
По предварительному расчету |
По окончательному расчету |
||||||||||||||
Номер участка |
Тепловая нагрузка Q, Вт |
Расход теплоносителя G, кг/ч |
Длина участка l,м |
Диаметрd, мм |
Скоростьv, м/с |
Удельные потери давления на трение R, Па/м |
Потери давления на трение Δртр, Па |
Сумма коэффициентов местных сопротивлений∑ξ |
Потери давления в местных сопротивлениях Z |
d, мм |
v, м/с |
R, Па/м |
Δртр, Па |
∑ξ |
Z, Па |
Rl+Z, Па |
Занятие 6
VALTEC.PRG.3.1.3. Программа для теплотехнических и гидравлических расчетов
Программа VALTEC.PRG находится в открытом доступе и дает возможность рассчитать водяное радиаторное, напольное и настенное отопление, определить теплопотребность помещений, необходимые расходы холодной, горячей воды, объем канализационных стоков, получить гидравлические расчеты внутренних сетей тепло- и водоснабжения объекта. Кроме того, в распоряжении пользователя – удобно скомпонованная подборка справочных материалов. Благодаря понятному интерфейсу освоить программу можно, и не обладая квалификацией инженера-проектировщика. Программа соответствует требованиям российских нормативных документов, регулирующих проектирование и монтаж инженерных систем (сертификат соответствия).
- Отличие версии 3.1.3 от версии 3.1.2:
- добавлен модуль расчета пропускной способности труб;
- внесены поправки в модуль расчета потребности воды по СНиП – предусмотрена возможность продолжения расчета при вероятности более единицы (недостаточное количество приборов);
- расширена справочная таблица «Трубы»;
- обновлено «Руководство пользователя».
Обучающие ролики:
Расчёт теплопотерь коттеджа. Часть 1 Расчёт теплопотерь коттеджа. Часть 2 Расчёт напольного отопления Часть 1 Расчёт напольного отопления Часть 2
Этапы проектирования
Для создания грамотной СО необходимо выполнить следующие виды работ:
- Выбрать наиболее подходящую систему обогрева для конкретной постройки.
- Создать эскиз с трассировкой магистрального трубопровода и стояков.
- Провести гидродинамические теплотехнические расчеты для грамотного подбора оборудования, материалов и диаметров трубопровода и других элементов системы.
- Создать чертеж СО с привязкой к планировке здания.
Проектирование систем отопления и вентиляции начинается с составления технического задания, которое формируется на основании данных осмотра объекта, замеров и пожеланий клиента. После этого, специалист предлагает заказчику наиболее подходящий вариант (эскиз) отопительной системы с полным технико-экономическим обоснованием. Когда, возможные затраты на создание СО будут согласованы с заказчиком, учтены его замечания и пожелания, специалист-проектировщик приступает к наиболее ответственному шагу – расчетам, на основании которых составляются схемы СО и планом прокладки инженерных коммуникаций.
После консультации с клиентом, специалист составляет спецификацию материалов, оборудования и готовит пакет документов для согласования в соответствующих инстанциях. Последним этапом в создании проекта является привлечение субподрядчика для выполнения монтажных и пусконаладочных работ.
Программный комплекс Valtec «Sputnik»
Программный комплекс Valtec «Sputnik» предназначен для использования в сфере ЖКХ (УК, ТСЖ) и промышленности. Интуитивно понятный интерфейс делает возможность быстрого обучения пользователей. Ряд специальных отчетов для УК (ТСЖ, ресурсоснабжающих организаций) и интеграция с бухгалтерскими программами (1С) позволяет легко формировать квитанции на оплату. Для диспетчерского пункта включены отчеты, позволяющие отслеживать аварийные ситуации, несанкционированный доступ к ресурсам, заявки от абонентов из личного кабинета.
Внедрена интеграция в ГИС ЖКХ для упрощения ведения отчетов в организациях.
- Основные возможности:
- Сбор показаний с приборов учета, датчиков событий, удаленное ограничение ресурса
- Мониторинг аварийных ситуаций онлайн
- Хранение данных
- Формирование специальных отчетов
- Интеграция со смежными программными продуктами использующиеся в бизнес процессах организации(1С, видеонаблюдение, ПОС и т.д.)
- Открытый API
- Рекомендации по экономии ресурсов
Для ознакомления с возможностями программы: Логин: demo Пароль: demo
В случае комплексной поставки приборов учета и системы диспетчеризации лицензионный файл, позволяющий полноценно работать с программой выдается бесплатно. Сервер формируется на стороне заказчика.
В качестве дополнительной платной услуги возможно использование удаленного облачного сервера Valtec.
Для пуско-наладочных работ, сдачи объекта в эксплуатацию либо тестирования оборудования системы диспетчеризации предоставляется бесплатный тестовый файл лицензии сроком действия 1 месяц.
За подробностями получения тестовой лицензии обращайтесь к менеджерам, работающим в вашем регионе.
Программа Oventrop co: выбираем полипропиленовые трубы
Oventrop co предназначена для выполнения быстрых расчетов. Перед работой вносятся нужные настройки и подбираются элементы оборудования. При этом создаются разнообразные схемы отопления. В них вносятся изменения. Данная программа для гидравлического расчета позволяет определить расход теплоносителя и выбрать трубы нужного диаметра. Она помогает выполнить вычисления для однотрубной и двухтрубной конструкций. С ней удобно работать. Программа оснащена готовыми блоками и каталогами материалов.
Регулировка существующей конструкции производится с помощью подбора мощности и необходимого оборудования. Программа помогает выбрать характеристики арматуры.
Результаты расчетов можно перевести в операционную систему в удобном варианте.
Программы для проектирования систем отопления в частном загородном дома и многоэтажном квартирном здании
Требование административного ресурса. Бюро технической инвентаризации, Энергонадзор или газовая служба заставят Вас сделать его, если планируются наружные сети
Мы рекомендуем обратить внимание на приложение ИНЖКАД от поставщика ZWSOFT. Оно предназначено специально для этих целей
Вы сможете взаимодействовать с ним не только на родной платформе, но и в среде AutoCAD, BricsCAD. Также обратите внимание на Geonium – адаптацию известной программы GeoniCS, если желаете автоматизировать проектно-изыскательные процесс. Все чертежи, выполненные в этом программе, будут соответствовать ГОСТ, снабжены штампами и экспликациями.
Большой дом. При площади более 200-300 м, это обязательное условие. Если не выполнить его, будет сложно организовать деятельность строительной площадке. Споры между общестроительной и инженерной частью усложнят и затормозят процесс возведения здания. Слабое взаимодействие архитекторов, заказчиков, поставщиков друг с другом приведет к ошибкам, которые повлекут за собой лишние траты. Если территория будущего объекта меньше обозначенных цифр, достаточно теплового расчета помещений, схемы прокладки и подключения. Зданию будет хватать циркулярного насоса минимальной мощности, поэтому даже считать гидравлику монтажнику не придется.
Желание заказчика. Он хочет знать, где будут расположены коммуникации после отделки. Но в этом случае речь скорее идет об исполнительной схеме сделанного, а не о полноценном плане.
В каждой из этих ситуаций застройщик обращается к профессионалам, которые имеют необходимые лицензии и навыки работы с профессиональным ПО. С его помощью они вычисляют нужные параметры с минимальной погрешностью, проводят сложные гидравлические расчеты, моделируют различные ситуации в работе теплоснабжения:
Качественный программный комплекс хранит информацию о текущем состоянии всех элементов. В него также заложены данные единого реестра городских тепловых сетей. Автор проекта видит, как его действия влияют на общее состояние объекта. Он оценивает пропускную способность каждого участка теплотрассы, предотвращает поломки и ЧС, продумывает, как лучше подключить новое оборудование.
При выборе компьютерного обеспечения специалисты руководствуются рядом общих требований.
Выбор насосного оборудования
Параметры расчета отопления дома на калькуляторе
Чтобы узнать требуемую мощность отопительного котла, количество труб и радиаторов, нужно определить следующие параметры:
- Площадь здания и количество этажей. По стандартной формуле на 10 кв. метров площади помещения потребуется 1 кВт мощности оборудования. Однако также необходимо учитывать количество комнат, высоту потолков, количество и размеры окон.
- Объем теплопотерь. Обычно теплопотери дома варьируются в пределах от 50 до 150 Вт/кв.м, они зависят от утепленности здания, типа установленных стеклопакетов. Верхние этажи здания теряют больше тепла, чем нижние.
- Температурный режим. Стандартным вариантом для расчетов является европейский режим 75/65/20, на него ориентированы западные отопительные котлы.
- Мощность радиаторов и количество секций. Калькулятор расчета отопления по площади радиаторов позволит определиться с предстоящими затратами на покупку и установку оборудования. Эффективность теплопередачи зависит от выбранного типа радиаторов.
- Гидравлические расчеты. В зависимости от требуемого уровня давления рассчитывается оптимальный диаметр труб и параметры работы циркуляционного насоса. Правильно рассчитанное давление обеспечит стабильную циркуляцию теплоносителя по всем комнатам и равномерное распределение тепла.
Результатами расчетов станут оптимальная мощность отопительного котла для комфортной температуры во всех комнатах, количество, тип и площадь радиаторов, оптимальный диаметр трубопровода. Эти данные необходимы для закупки и монтажа оборудования, а также для расчета предстоящих затрат на ежегодный обогрев. Проведение расчетов требует специальных знаний о работе инженерных систем, поэтому владельцу загородного дома проще воспользоваться готовой программой и указать нужные параметры.
Наглядный пример вычисления для одно (горизонтальной) и двухтрубной системы отопления: сопротивление в трубопроводе
Пример расчета отображает процедуру выполнения гидравлического вычисления. Подбирается участок трубопроводной системы, имеющий значительные тепловые потери. Для примера используется простая схема отопления. Она содержит котел и батареи. В конструкции 10 радиаторов.
Предварительно схема разбивается на участки. На каждом участке сечение труб не меняется. К первому участку относится трубопроводная линия от котла до первого прибора. Второй включает расстояние между первой и второй батареей. Остальные делятся аналогичным образом.
Температура в радиаторах снижается следующим образом. В первом приборе теплоноситель отдает часть тепла, которое уменьшается на 1 кВт. При этом на первом отрезке тепловая энергия имеет значение в 10 кВт, а затем понижается.
Расход теплоносителя считается по следующей формуле: Q=(3.6*Qуч)/(с*(tr-to)).
При этом Qуч – это значение тепловой нагрузки заданного отрезка, с –это удельная теплоемкость воды. Данный показатель имеет постоянное значение. Это 4,2 кДж/кг*с.
tr – это температура жидкости на входе в участок, а to – это температура на выходе.
Существует оптимальная скорость перемещения горячей жидкости внутри системы. Это значение равняется 0,2-0,7м/с. Если цифра снизится, то в конструкции образуются пробки из воздуха.
Для точного расчета скорости стоит учесть материал, из которого изготовлена водопроводная линия. На скорость влияет шероховатость внутренней поверхности изделия.
Для выбора контура рассматривается по отдельности однотрубная и двухтрубная схема.
В первом случае для расчета выбирается стояк с самым большим количеством оборудования. В двухконтурной конструкции для расчета выбирается нагруженный контур. На его основе выполняется вычисление, так как в данном элементе сопротивление выше, чем в остальных.
Для определения размера трубопровода применяется специальная смета. При этом все отрезки схемы суммируются. Теплоотдача трубопроводной линии равняется тепловой энергии, которую выделяет теплоноситель на определенном участке конструкции.
При планировании строительства дома и выполнении отопительного проекта рекомендуется воспользоваться специальным программным обеспечением, которое позволяет просчитать тепловые и гидравлические показатели конструкции с высокой точностью.
Выполнение правильных расчетов влияет на эффективность работы системы регулирования. Сделать гидравлический расчет отопления в частном доме сможет только хороший специалист.
Сбор и получение данных
Проектирование системы отопления и тепловых сетей ИТП в Renga предусматривает 2 сценария работы.
В первом, профильный специалист получает трехмерную модель от архитектора или конструктора и начинает свою работу по моделированию соответствующего раздела. В комплексной архитектурно-строительной системе Renga реализован механизм совместной работы. Программа позволяет инженерам по отоплению вести параллельную работу над проектом с архитекторами и конструкторам. Участники проекта работают с актуальной информацией по 3D-модели, вовремя согласовывая принимаемые решения между собой.
Во втором сценарии, проектировщик получает 2D-чертежи от архитектора или конструктора, самостоятельно создает 3D-модель с помощью предоставленных инструментов, а уже далее наполняет ее объектами сетей отопления. Имеется возможность использовать 2D-чертежи в качестве подложки.
Расчет тепловой мощности системы отопления
Тепловая мощность системы отопления — это количество теплоты, которое необходимо выработать в доме для комфортной жизнедеятельности в холодное время года.
Теплотехнический расчет дома
Существует зависимость между общей площадью обогрева и мощностью котла. При этом, мощность котла должна быть больше или равняться мощности всех отопительных приборов (радиаторов). Стандартный теплотехнический расчет для жилых помещений следующий: 100 Вт мощности на 1 м² отапливаемой площади плюс 15 — 20 % запаса.
Расчет количества и мощности приборов отопления (радиаторов) необходимо проводить индивидуально для каждого помещения. Каждый радиатор имеет определенную тепловую мощность. В секционных радиаторах общая мощность складывается из мощности всех используемых секций.
В несложных отопительных системах приведенных способов расчета мощности бывает достаточно. Исключение — здания с нестандартной архитектурой, имеющие большие площади остекления, высокие потолки и другие источники дополнительных теплопотерь. В этом случае потребуется более детальный анализ и расчет с использованием повышающих коэффициентов.
Теплотехнический расчет с учетом тепловых потерь дома
Расчет тепловых потерь дома необходимо выполнять для каждого помещения в отдельности, с учетом окон, дверей и внешних стен.
Более детально для данных теплопотерь используют следующие данные:
- Толщину и материал стен, покрытий.
- Конструкцию и материал кровельного покрытия.
- Тип и материал фундамента.
- Тип остекления.
- Тип стяжек пола.
Для определения минимально необходимой мощности отопительной системы с учетом тепловых потерь можно воспользоваться следующей формулой:
Qт(кВт×ч) = V × ΔT × K ⁄ 860, где:
Qт — тепловая нагрузка на помещение.
V — объем обогреваемого помещения (ширина × длина × высота), м³.
ΔT — разница между температурой воздуха вне помещения и необходимой температурой внутри помещения, °C.
K — коэффициент тепловых потерь строения.
860 — перевод коэффициента в кВт×ч.
Коэффициент тепловых потерь строения K зависит от типа конструкции и изоляции помещения:
K | Тип конструкции |
3 — 4 | Дом без теплоизоляции — упрощенная конструкция или конструкция из гофрированного металлического листа. |
2 — 2,9 | Дом с низкой теплоизоляцией — упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. |
1 — 1,9 | Средняя теплоизоляция — стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. |
0,6 — 0,9 | Высокая теплоизоляция — улучшенная конструкция, кирпичные стены с теплоизоляцией, небольшое число окон, утепленный пол, кровельный пирог с высококачественной теплоизоляцией. |
Разница между температурой воздуха вне помещения и необходимой температурой внутри помещения ΔT определяется исходя из конкретных погодных условий и требуемого уровня комфорта в доме. Например, если температура снаружи -20 °C, а внутри планируется +20 °C, то ΔT = 40 °C.
Оформление
Project Studio CS Отопление. Оформление плана
Программа Project Studio CS Отопление полностью соответствует требованиям отечественных нормативных документов. Все табличные формы отвечают ГОСТ 21.602−2011 и ГОСТ 21.110−2013. Размещение на чертеже рамки с основной надписью осуществляется по ГОСТ Р 21.1101−2013.
Project Studio CS Отопление. Оформление аксонометрии
В программе реализован следующий функционал: уклон (информация берется с трубопровода), высотная отметка (автоматически считывающая реальную высоту объекта), текстовый элемент (врезка в трубы обозначений трубопровода Т1 и Т2) и спецвыноска.