Индуктивные датчики. устройство, типы и виды индуктивных датчиков

Лидирующие в сегменте производители

Выпускают такие датчики многие фирмы. В их ряду есть признанные лидеры. Среди них немецкая компания Sick, как основной производитель подобной продукции высокого качества. Компания Autonics поставляет на рынок концевые бесконтактные выключатели индуктивного и емкостного типов.

Бесконтактные датчики высокого качества выпускает российская . Они отличаются сверхвысокой герметичностью (IP 68). Работают эти концевики в самых опасных средах, включая взрывоопасные, доступны разные методы монтажа.

Популярностью пользуются конечные выключатели украинского . Здесь выпускают выключатели и переключатели концевые ВП, ПП, ВУ. Гарантия, при условии соблюдения всех эксплуатационных правил, составляет 3 года.

Самостоятельное тестирование

Перед тем как проверить датчик скорости, следует выяснить поступает ли на контакты электрическое напряжение. Следует понимать, что поскольку функционирование датчика основывается на эффекте Холла, контакт, предназначенный для передачи импульсов, проверяется лишь при кручении, а в его отсутствии – напряжение на прибор подаваться не будет. Его нормальные значения при проверке мультиметром могут колебаться в пределах значений от 0,5 до 10 В. Способов самостоятельного тестирования датчика скорости три.

  1. При таком способе диагностики потребуется предварительный демонтаж устройства. При помощи цифрового мультиметра следует отыскать среди контактов тот, через который ведется передача импульсов. Плюсовой щуп мультиметра замыкается на него, а минусовой – на корпус авто. После этого ось самого датчика необходимо начать вращать с малой скоростью – мультиметр покажет небольшое напряжение, которое должно возрастать параллельно с увеличением скорости вращения оси.

Внимание! Демонтаж датчика следует проводить только при выключенном зажигании, в противном случае в момент разъединения контактов устройство может просто перегореть.

  1. Второй способ позволит обойтись без снятия устройства. Потребуется домкрат, посредством которого приподнимается одно из ведущих колес автомобиля. Щупы мультиметра замыкаются с контактами датчика скорости, и начинается ручное вращение колеса – в этот момент мультиметр должен показать появившееся на контактах напряжение, растущее по мере увеличения скорости вращения. Если этого не происходит – датчик неисправен и подлежит замене.
  2. В том случае, если мультиметр отсутствует, а проверку провести необходимо, можно воспользоваться контрольной лампочки на 12 В. Порядок действий при такой проверке идентичен 2-му способу, но вместо мультиметра, к контактам датчика скорости присоединяются контакты контрольной лампочки. Если датчик исправен, лампочка загорится при вращении колеса.

При использовании второго и третьего способа имеет смысл проверить и привод устройства. Он отыскивается на ощупь, и при вращении колеса оценивается стабильность вращения привода.

Проверка двухпроводного индуктивного датчика

Существует ряд общих признаков неисправного ДПРВ. Если у вас возникли такие проблемы, вам может потребоваться его заменить. Эти же симптомы могут быть вызваны проблемами с системами зажигания или впрыска топлива. Таким образом, перед заменой ДПРВ стоит провести тесты на определение настоящего источника неисправности.

Если загорается индикатор проверки, ваш ECU записывает код неисправности. Вы можете проверить ошибки с помощью специального диагностического прибора. Коды между P0335 и P0338 соответствуют проблемам ДПРВ.

Это, вероятно, самый простой и наиболее точный способ проверки и определения проблемы ДПРВ. К сожалению, ДПРВ, как правило, выходит из строя намного раньше, чем загорается соответствующий индикатор. Чтобы быть постоянно в курсе проблем автомобиля, стоит проводить и другие виды тестирования.

RPM – этот следующий метод проверки ДПРВ, где также потребуется диагностический прибор. Одна из настроек сканера позволяет считывать скорость вращения двигателя в оборотах в минуту (об/мин). Настройте сканер для считывания оборотов двигателя и заведите его. Сканирующий прибор должен считывать от 100 до 500 об/мин. Низкое значение указывает на то, что ДПРВ работает неправильно. «0» означает, что ДПРВ полностью вышел из строя.

Тестирование мультиметром

Конечно, доступ к сканеру есть не у всех (хотя их иногда можно арендовать в магазинах запасных частей). Мультиметр является более распространённым и очень полезным инструментом для диагностики многих электронных компонентов вашего автомобиля. Мультиметр может измерять напряжение, ток и сопротивление.

Вы можете снять ДПРВ, а затем проверить сопротивление. Прикрепите один конец мультиметра к каждому проводу ДПРВ. Сопротивление 0 означает, что существует короткое замыкание. Бесконечное сопротивление означает, что существует разомкнутая цепь. Любое из этих показаний указывает на то, что ДПРВ не работает. При любом другом значении проверьте его в инструкции производителя. Если показание не соответствует рекомендуемому сопротивлению, вы должны заменить ДПРВ.

Ещё один способ проверить ДПРВ с помощью мультиметра – проверить выходное напряжение при помощи двигателя. Чтобы сделать это, вам понадобится помощник. Зачистите соединительные разъёмы и измерьте выходное напряжение в милливольтах переменного тока. Как правило, это показание составляет около 200 милливольт, но может изменяться в зависимости от марки авто. Проверьте технические характеристики в инструкции пользователя. Если выходного напряжения нет, то, очевидно, ваш датчик работает неправильно.

Эти тесты помогут вам определить источник проблемы. Они либо предотвратят ремонт, который вам не нужен, либо подтвердят, что ремонт, который вы собираетесь сделать, именно тот, который действительно нужен. Если тестирование действительно подтвердило, что ваш ДПРВ неисправен, придётся его заменить.

Характеристики индуктивных датчиков

Чем отличаются датчики.

Конструкция, вид корпуса

Тут два основных варианта  – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать

Можно вообще не думать, как их подключать

Главное – обеспечить ток

Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо  соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Устройство биполярного транзистора

https://youtube.com/watch?v=iqraL2VcOjw

Элемент назвали биполярным, потому что в его работе принимают участие сразу 2 типа зарядных носителей – электроны (устойчивые отрицательно заряженные элементарные частицы) и дырки (квазичастицы с положительным зарядом). Работа ранее разработанного униполярного (полевого) устройства основана на применении лишь одного из носителей. Прибор имеет 3 слоя, на каждый из которых подается напряжение:

  • эмиттер;
  • база (базовая плата, пластина);
  • коллектор.

Negative — это кремниевый сплав. Он обладает избытком отрицательных переносчиков заряда — электронов (n-doped), а positive — избытком положительных «дырок» (p-doped).

База очень тонкая, представлена слаболегированным полупроводником, поэтому она имеет сильное сопротивление. Коллектор, как правило, шире эмиттера. Поэтому общая площадь соединения база-коллектор значительно превышает комплекс база-эмиттер. Менять местами эти 2 области за счет изменения полярности нельзя. Транзистор не относится к симметричным элементам — это необходимо для его правильной работы.

Устройство и схема

Индукционный датчик, как и любое электронное устройство, состоит из связанных друг с другом узлов, обеспечивающих бесперебойность его работы. В качестве основных элементов аппарата можно выделить следующее.

Генератор

Ключевой задачей генератора является создание магнитного поля, на основе которого, в частности, строится принцип действия индукционного датчика, а также образуются зоны активности с объектом.

Триггер Шмидта

Триггер Шмидта представляет собой отдельный элемент, основным назначением которого считается обеспечение гистерезиса в процессе переключения устройства.

Усилитель

Усилительное устройство используется в качестве элемента, способного повышать значение амплитуды импульса, что позволяет сигналу быстрее достигать необходимого параметра.

Специальный индикатор

Диодный индикатор, свидетельствующий о фактическом состоянии контроллера. Кроме того, светодиод используется для обеспечения достаточного контроля функционирования индукционного датчика, а также, чтобы обеспечить достаточную оперативность в процессе настройки.

Компаунд

Компаунд предназначается для защиты устройства, поскольку может предотвратить попадание жидкости, в частности воды, внутрь корпуса индукционного датчика, а также снижает риск загрязнения оборудования, так как пыль может спровоцировать его поломку.

Принцип работы индуктивного датчика

В отличие от популярных в прошлом электромеханических выключателей индуктивные датчики относятся к оборудованию с бесконтактным принципом работы, т. е. для срабатывания датчику не требуется физический контакт с объектом. Это означает отсутствие механического износа, что оказывает существенное влияние на время жизни компонентов и исключает необходимость их обслуживания. В силу принципа действия индуктивные датчики используются в случаях, когда требуется определять металлический, либо изготовленный из магнитных/ферромагнитных материалов объект или предмет. Неметаллические объекты датчиком игнорируются.

В общем случае индуктивный датчик состоит из нескольких основных компонентов

— металлический (чаще всего латунный или стальной), либо пластиковый корпус, в котором помещаются все компоненты датчика;

— катушка колебательного контура, находящаяся непосредственно за пластиковой или металлической т. н. чувствительной поверхностью датчика;

— генератор, создающий электромагнитное поле;

— триггер Шмитта, преобразующий аналоговый сигнал в логический дискретный;

— усилитель, обеспечивающий достаточный уровень выходного сигнала для дальнейшей его передачи;

— один или несколько светодиодных индикаторов – чаще всего для индикации срабатывания, но в отдельных случаях также указывающий на наличие питания датчика и статус конфигурирования;

— компаунд, которым заливается всё внутреннее пространство датчика для защиты электронных компонентов от попадания влаги и мелких частиц;

— кабель, клеммная коробка, либо разъём для подключения датчика.

Принцип действия

индуктивного датчика основывается на изменении индуктивности катушки и сердечника – потому датчик и называется индуктивным. Он сводится к нескольких основным этапам:

— на датчик подаётся питание

— генератор вырабатывает магнитное поле в области катушки

— при попадании в область действия датчика металлического, магнитного или ферромагнитного объекта в нём наводятся вихревые токи, изменяющие амплитуду колебаний генератора

— изменение амплитуды обеспечивает выходной аналоговый сигнал

— триггер Шмитта преобразует аналоговый сигнал в логический дискретный

— усилитель повышает уровень сигнала до необходимого значения

Как и любое другое электронное устройство, индуктивный датчик обладает рядом основных и второстепенных параметров. Первые являются основными при подборе датчика для решения конкретной задачи, в то время как вторые позволяют установить пригодность датчика для использования в специфических условиях.

Как работает индуктивный датчик?

Благодаря своей внутренней структуре индуктивный датчик имеет определенные принципы работы. Здесь используется специальный генератор, который выдает определенную амплитуду колебаний. Когда металлический или ферромагнитный объект попадает в поле действия датчика, колебания начинают считываться и изменяться.

Давайте упростим принцип работы…

Для начала работы на датчик подается питание, которое способствует формированию магнитного поля. Это поле в свою очередь создает вихревые токи, которые изменяют амплитуду колебаний в работающем генераторе.

Конечным результатом всех этих преобразований является выходной сигнал, который может варьироваться в зависимости от расстояния между индуктивным датчиком и исследуемым объектом.

Сигнал, который первоначально исходит от датчика, является аналоговым, который преобразуется в логику с помощью специального устройства, называемого триггером.

Маркировка при подключении

На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.

Цветовая маркировка выводов

Перед установкой датчика необходимо сверить данные с инструкцией

На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.

На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.

Стандартный порядок обозначения:

  • синий (Blue) всегда означает минусовую шину питания;
  • коричневым цветом (Brown) обозначается плюсовой проводник;
  • черный (Black) соответствует выходу датчика;
  • белый (White) – это дополнительный выход или вход.

Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.

Re: Подключение индуктивного датчика

А схему подключения не подскажите? Ведь мне надо подтягивать землю к входу ,а не питание.

seaw688 Новичок   Сообщения: 5Зарегистрирован: 02 апр 2016, 11:44 Репутация: Настоящее имя: Владислав

Это интересно: Выбивает трехфазный автомат на вводе: в чем причина?

Оптикоэлектронные датчики углового положения (энкодеры)

Оптикоэлектронные датчики углового положения чаще называют энкодерами. Оптикоэлектронный энкодер представляет собой в простейшем случае стеклянный либо пластиковый диск с прозрачными окнами, помещенный между светодиодом и фототранизистором. Это один из самых распространенных датчиков положения в мире — в каждой компьютерной мыши колесико представляет собой именно энкодер.

В зависимости от расположения прорезей и количества фотодатчиков, оптические энкодеры могут быть инкрементальными либо абсолютными. Инкрементальный энкодер не может однозначно определить начальное положение вала, в отличии от абсолютного энкодера — комбинация прорезей, а следовательно комбинация включения фотодатчиков, однозначно определяет положение абсолютного энкодера в любой момент времени.

Слева (голубой) диск инкрементального энкодера, 2 фотодатчика и «сдвинутые» прорези позволяют опредеить направление вращения вала. Справа (зеленый) диск абсолютного энкодера. В приведенном примере это 3-х битный абсолютный энкодер, с прорезями на диске соответствующих коду Грея. Абсолютный энкодер позволяет определить точное угловое положение вала в любой момент.

Параметры индуктивного датчика

Один из параметров уже описывался выше – это диапазон срабатывания. Хотя, как утверждают специалисты, он не является важным, но именно по нему и делают выбор. Все дело в том, что в паспорте изделия указываются номинальные параметры напряжения при работе прибора в температурном режиме +20С. Постоянное напряжение составляет 24 вольт, переменное – 230 вольт. Как вы понимаете, в таких условиях индукционный датчик обычно не работает, а если и работает, то редко. При этом в качестве объекта, который будет изменять индуктивность катушки прибора, должна выступать стальная пластина, ее ширина должна быть равна трем диапазонам срабатывания и толщиною 1 мм.

  Как ответить на вопрос: что это такое — триггер?

Маркировка

На практике же за основу выбора берут два показателя диапазона срабатывания:

  • Эффективный.
  • Полезный.

Показания первого отличаются от номинального параметра в пределах ±10%. При этом температурный диапазон расширяется от +18С до +28С. Второй определяется, как ±10% от первого при температурном режиме от 25 до 70С. И если при первом параметре используется номинальное напряжение в сети, то при втором присутствует разброс от 85% до 110% от номинала.

Есть еще один параметр, который связан с зоной срабатывания. Это гарантированный предел. Его нижняя часть равна «0», а верхняя 81% от номинального диапазона.

Необходимо учитывать и такие параметры, как гистерезис и повторяемость. Что такое гистерезис в этом случае? По сути, это расстояние между дальними позициями срабатывания датчика. Оптимальное его значение – это 20% от эффективного диапазона срабатывания.

Не последнее значение имеет и материал, из которого изготавливается объект слежения (перемещения). Оптимальный вариант – сталь 37, ее коэффициент редукции равен «1». Все остальные металлы имеют меньший коэффициент. К примеру, нержавейка – 0,85, медь – 0,3. Как понять, на что влияет коэффициент редукции? Для примера возьмем медную пластину. То есть, получается так, что диапазон срабатывания будет равно 0,3, умноженному на полезный диапазон срабатывания. Достаточно низкий показатель.

Перечислим и другие не столь важные параметры6

Постоянное напряжение имеет диапазоны: 10-30, 10-60, 5-60 вольт. Переменное 98-253 вольт.

Индуктивные прямоугольные датчики серии RN

  • Ток нагрузки (номинальный) – 200 мА. Сегодня производители иногда производят датчики с токовой нагрузкой 500 мА. Это так называемое специсполнение.
  • Частота отклика. Суть этого параметра заключается в том, что он показывает максимальное значение возможности переключаться. Измеряется данный параметр в герцах. Так для основных промышленных датчиков этот показатель равен 1000 Гц.

Чем отличаются индуктивные датчики

Индуктивные датчики определяют, в левом или в правом положении находится рычаг

Индуктивный датчик подсчета импульсов

Почти все, что сказано ниже, относится не только к индуктивным, но и к оптическим, емкостным и другим датчикам.

Конструкция, вид корпуса.Тут два основных варианта — цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса — металл (различные сплавы) или пластик.
Диаметр цилиндрического датчика.Основные размеры — 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.
Расстояние переключения (рабочий зазор).Это то расстояние до металлической пластины, на котором гарантируется надежное срабатывание датчика. Для миниатюрных датчиков это расстояние — до 2 мм, для датчиков диаметром 12 и 18 мм — до 4 и 8 мм, для крупногабаритных датчиков — до 20…30 мм.
Количество проводов для подключения.2-х проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением — не играет роли ни подключение нагрузки, ни полярность

Главное — обеспечить рабочий ток.3-х проводные. Наиболее распространены. Есть два провода для питания, и один — для нагрузки. Подробнее расскажу ниже.
4-х и 5-ти проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод — выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности.У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента.

Релейный. Реле коммутирует в простейшем случае один из проводов питания, как это делается в бытовых датчиках движения или освещенности. Универсальный вариант с «сухим» контактом, когда выходные контакты реле не связаны с питанием датчика. При этом обеспечивается полная гальваническая развязка, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением.

Транзисторный PNP. На выходе — транзистор PNP, то есть коммутируется «плюсовой» провод. К «минусу» нагрузка подключена постоянно.

Транзисторный NPN. На выходе — транзистор NPN, то есть коммутируется «минусовой», или нулевой провод. К «плюсу» нагрузка подключена постоянно.

Пример оптического датчика с релейным выходом

Можно четко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод питания и коммутируется. Другой полюс подключен к нагрузке постоянно. Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

  1. Виды датчиков по состоянию выхода.Какой бы ни был датчик, один из основных его параметров — электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

    Выход в этот момент может быть включен (на нагрузку подается питание), либо выключен. Соответственно, говорят — нормально открытый (НО) контакт или нормально закрытый (нормально замкнутый, НЗ) контакт. В иностранном обозначении — NO и NC.

    То есть, главное, что надо знать про транзисторные выходы датчиков — то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода: PNP NO, PNP NC, NPN NO, NPN NC.

  2. Положительная и отрицательная логика работы.Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле). Отрицательная или положительная логика относится к уровню напряжения, который активизирует вход.

Отрицательная логика: вход контроллера активизируется (логическая «1») при подключении к НУЛЮ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В. Отрицательная логика используется для датчиков типа NPN.

Положительная логика: вход активизируется при подключении к +24 В. Клемму контроллера S/S необходимо соединить с нулем. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Преимущества и недостатки

Индукционные датчики имеют свои достоинства и недостатки, как и любое другое устройство. Главным преимуществом считается простота конструкции, не требующая сложной настройки и не нуждающаяся в особых условиях для монтирования. Приспособление не имеет скользящих контактов, сделано из прочного материала и может на протяжении длительного времени работать без перерыва.

Стоит также отметить, что прибор очень редко выходит из строя, и ремонт его не представляет сложности. Именно поэтому его часто устанавливают на предприятиях, где необходим почти круглосуточный контроль за производственным процессом. Бесконтактное подключение позволяет без проблем осуществлять соединение с промышленной системой напряжения.

Важным преимуществом считается высокая чувствительность, позволяющая устанавливать датчики на производстве, где работают с металлическими предметами из разных сплавов.

Несмотря на все достоинства приспособления, существуют и некоторые недостатки. Наиболее важным считаются погрешности, которые прибор выдает в работе. Нелинейный тип погрешности проявляется вследствие того, что прибор имеет свой показатель индуктивной величины, который может отличаться от значения тех предметов, на которые он реагирует. Именно поэтому датчик может реагировать на металл некорректно и подавать неверные сигналы.

Часто встречается температурная погрешность, связанная со значительным понижением или повышением температуры в производственном помещении. Инструкция к прибору предполагает его правильное функционирование при показателе +25 градусов. При отклонении значения в ту или иную сторону нарушается работа приспособления.

Одной из случайных погрешностей считается изменение показаний датчика вследствие воздействия на него электромагнитного поля других приборов. Для того чтобы избежать подобных ситуаций, на всех производствах установлен стандарт частоты электроустановок, составляющий 50 Гц. В этом случае риск возникновения погрешности из-за постороннего электромагнитного излучения снижается к минимуму. Исключить любые нарушения в работе устройства можно путем предварительной проработки деталей.

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие оптические датчики я встречаю в своей работе.

Вариант №1: воспользоваться специальным преобразователем, например устройством согласования сигналов УСМ, которое представлено у нас в ассортименте, или аналогичным.

Вариант №2: если вы хотя бы минимально дружите с паяльником, сделать преобразователь самому.

Если в наличии есть датчик с PNP выходом, а нужен NPN — собираем вот такую схему:

Транзистор Q1 — любой подходящий NPN, например 2SC495, BC445, BD237.

Если же в наличии имеется датчик с NPN выходом, а нужен PNP — такую схему:

Транзистор Q1 — любой подходящий PNP, например 2N5401, КТ502Д.

Понравилась статья? Поделиться с друзьями:
Стильный дом
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: