Разделение pen проводника на pe и n

Pen проводник – разделение, требования

Зачем разделять PEN проводник, если между PE и N шинами ставится перемычка – «физика» процесса

Прямого ответа на этот вопрос в ПУЭ и ГОСТах не дается – есть только рекомендации «как это сделать», а «почему» – не рассматривается, скорее всего, исходя из того предположения что и так должно быть ясно. Поэтому все последующие объяснения надо воспринимать как мнение автора, подкрепленное принципами подключения электропроводки и требованиями ПУЭ.

Главные моменты здесь следующие:

  1. В любой схеме, где иллюстрируется разделение PEN проводника на PE и N, заземление всегда ставится первым и уже от него идет перемычка к рабочему нолю. Это основное требование, от которого надо отталкиваться при разделении PEN проводника – наоборот не делается никогда и ни при каких условиях.
  2. Даже отдельно сделанное заземление наиболее эффективно при подключение через автомат УЗО. В противном случае даже если напряжение с корпусом электроприбора Будет уходить в землю всё равно остается риск поражения человека током хотя и значительно меньший.
  3. Любой провод обладает неким электрическим сопротивлением, соответственно, чем длиннее провод, тем выше его сопротивление электрическому току.

Чтобы понять саму «физику процесса» надо рассмотреть как ведут себя различные схемы подключения при возникновении нештатной ситуации.

Если нет перемычки и автомата УЗО, ноль и заземление не связаны

Фаза попадает на корпус прибора от него уходит на шину заземления из него уходит в землю по которой идет на трансформаторная подстанцию.

Если взять среднее значение сопротивления заземляющего устройства в 20 Ом, ток короткого замыкания не будет достаточно большим для отключения вводного автомата. Соответственно, электрическая цепь будет работать до тех пор, пока не перегорит повреждённый участок (в любом случае в этом месте будет повышенная температура и провод рано или поздно испортится), или же повреждение не разовьется в полноценное короткое замыкание между фазой и нулем.

В лучшем случае здесь человека может ощутимо «пощекотать» током или устройство может испортиться. В худшем, прибор может воспламениться и спровоцировать пожар.

Если есть перемычка между нолем и заземлением, нет автомата УЗО

В таком случае схема работает примерно так же как если бы просто в дом завести PEN проводник, с той лишь разницей, что человек будет более защищен благодаря заземлению

Это будет происходить как раз из-за длины провода – так как в любом случае ВРУ находится на некотором удалении от квартиры или дома, во внимание надо принимать сопротивление провода

При замыкании фазы на корпус прибора, ток утечки пойдет на шину заземления, где у него будет только два выхода: часть его уйдет в землю, а другая вернется по нулевому проводу, спровоцировав отключение вводного квартирного автомата.

То есть, в данном случае перемычка нужна для того чтобы сработал защитный автоматический выключатель.

Если есть перемычки между PE и N, установлен УЗО

Так как у нулевого и заземляющего провода есть определенное сопротивление электрическому току, понятно, что в этом случае УЗО будет срабатывать в штатном режиме. Если появляется замыкание на корпус прибора, ток утечки, в первую очередь, идет по проводу к самому УЗО, а дальше уже уходит на ВРУ жилого дома. Здесь он опять же частично уходит в землю и частично через перемычку возвращаются назад провоцируя выключения вводного автомата, но до этого, скорее всего, дело не дойдет, так как УЗО сработает раньше.

Понятно, что в этом случае перемычка не играет особой роли и является больше лишней перестраховкой на тот почти невероятный случай, если не сработает защитный автомат УЗО.

Если нет перемычки между PE и N, установлен УЗО

Такая схема будет отрабатывать точно так же, как если бы перемычка между заземлением и рабочим нулем присутствовала. Единственное исключение в ней это отсутствие страховки на тот случай, если вдруг УЗО выйдет из строя. Тогда схема будет отрабатывать по первому варианту – вводной автомат может не сработать до тех пор, пока замыкания на корпус прибора не превратится в короткое замыкание между фазой и нулем.

На самом деле, такой вариант событий практически невозможен, потому что по факту такое подключение это уже схема заземления TN-S или даже TT, в которых предусмотрена двухфакторная защита – без нее такое подключение не примет энергонадзор.

https://youtube.com/watch?v=A4LWFA2cXXc

Квартира

Владельцам квартир не повезло в этом плане, как организация системы TN-C-S. В специфике снабжения многоквартирных домов старого фонда, подключение PEN провода происходит поочередно, с этажа на этаж. И в случае аварии, такой как перегорание нулевого провода в этажном щитке, в квартиру приходит две фазы. В этом случае наша система перестает работать и становится опасной.

По этой причине запрещается разделение PEN провода на PE и N, поскольку в случае аварии защитный проводник окажется под напряжением.

Чтобы организовать безопасное электроснабжение в квартире, нужно установить в щитке учета:

  • реле напряжения;
  • УЗО либо дифференциальные автоматы;
  • организовать полноценное заземляющее устройство в придомовом палисаднике или же проложить дополнительный провод PE к общедомовому ВРУ;
  • сделать систему уравнивания потенциалов.

Обращаем ваше внимание на то, что запрещается в качестве защитного заземления использовать водопроводные трубы, отопления и трубы газа!

В том случае если вы все-таки успели сделать в квартире проводку с защитным проводником, до прочтения нашей статьи, мы настоятельно рекомендуем не коммутировать ее с нулевым проводом и подъездным щитом, а оставить не подключенной, до тех пор, когда в вашем подъезде будут делать реконструкцию электропроводки и произведут замену старой проводки от ТП согласно новым нормам. Пока что можете использовать дополнительные аппараты защиты, описанные выше.

В новых квартирах с системой заземления TN-C-S разделение совмещенного проводника на нулевой рабочий и нулевой защитный производят в ГРЩ. От него уже идут два провода отдельно на этажный щит и в квартиры, как показано на схеме ниже:

Напоследок рекомендуем просмотреть полезные видео по теме:

Ответ специалиста

Требования к защитным проводникам

Вот и все, что хотелось рассказать вам о том, где должно быть выполнено разделение PEN проводника на PE и N по правилам ПУЭ. Еще раз дублируем ответ, чтобы вы наверняка запомнили: в частных домах провод нужно разделять до счетчика перед вводным коммутационным аппаратом, а в квартирах это делается в ГРЩ.

Будет полезно прочитать:

Ответ специалиста

Требования к защитным проводникам

Последовательность разделения PEN-проводника «с нуля»

Для того, чтобы понять правильность данной процедуры, необходимо ознакомиться с примером её последовательности. При отсутствии соответствующего образования и допуска до электротехнических работ, выполнять процесс самостоятельно не рекомендуется.

  1. Перед началом монтажа следует отключить напряжение. Для этого достаточно перевести автоматический выключатель, который является основным, в нижнее положение. После его выключения необходимо проверить с помощью индикаторной отвёртки отсутствие опасного потенциала.
  2. Можно приступать к монтажу шин. Используют специальные медные или алюминиевые пластины с готовыми отверстиями под болты. Если под рукой таких нет, то их можно изготовить самостоятельно, подойдёт обыкновенная сталь, в которой с помощью дрели и свёрл делают отверстия.
  3. Шина рабочего ноля крепится к щитку через изоляторы. Это делают в целях безопасности, так как бывают короткие замыкания в распределительных коробках, при которых отгорает ноль и соприкасается с фазой. Автоматический выключатель в данной ситуации не сработает, но нулевая шина будет под напряжением.
  4. Вторую шину, выполняющую роль заземления, можно крепить сразу к щитку, не используя изоляторы. После закрепления, на рабочую шину и шину заземления необходимо нанести соответствующую маркировку. По стандартам ПУЭ, ноль должен быть помечен синим цветом, а на заземлении установлен специальный знак. Чтобы не тратить время, знаки заземления и ноля можно приобрести в магазине, специализирующимся на электротехнической продукции.
  5. Между планками необходимо закрепить перемычку. Для этих целей также подойдёт пластина, выполненная из того же материала что и шины.
  6. На нулевую пластину, посредством болтовых соединений, крепятся только нулевые проводники. Такие провода также должны иметь синюю или голубую маркировку. На защитную шину монтируют провода заземления (с жёлто-зелёной изоляцией). При болтовом соединении следует обязательно использовать шайбы или не будет достигнут требуемый контакт.

Следует помнить, что лучше не выполнять вышеописанную процедуру, не имея знаний и опыта в области электрики или электротехники.

Зачем нужна перемычка между PE и N шинами?

Перемычка необходима, чтобы сработал вводный защитный автомат. При отсутствии перемычки и попадании фазы на корпус оборудования ток уйдет в землю, а не к трансформатору.

Если взять среднее значение сопротивления заземляющей цепочки в 20 Ом – тока утечки будет недостаточно для отключения автоматического выключателя. Цепь будет продолжать функционировать пока не перегорит поврежденный участок или не произойдет полноценное короткое замыкание. Ситуация может привести к удару током, порче оборудования и пожару.

В таком случае поможет УЗО – устройство защитного отключения, но полагаться только на него не стоит, потребуется двухфакторная защита – без нее подключение не примет энергонадзор. УЗО рекомендуется устанавливать в любом случае.

Обозначение фазы (L)

Сеть переменного тока включает в себя провода, находящиеся под напряжением. Правильное их название – « фазные ». Это слово имеет английские корни, и переводится как «линия» или «активный провод». Фазные жилы несут особенную опасность для здоровья человека и имущества. Для безопасной эксплуатации их покрывают надежной изоляцией.

Использование оголенных проводов под напряжением чревато следующими последствиями:

  1. 1. Поражение током людей. Это могут быть ожоги, травмы и даже смерть.
  2. 2. Возникновение пожаров.
  3. 3. Порча оборудования.

При обозначении проводов в электрике фазные жилы маркируются буквой «L». Это сокращение английского термина « Line », или « линия » (другое название фазных проводов).

Есть и другие версии происхождения этой маркировки. Некоторые специалисты считают, что прообразом стали слова «Lead» (подводящая жила) и Live (указание на напряжение). Подобная маркировка используется также для указания на зажимы и клеммы, на которые должны коммутироваться линейные провода. К примеру, в трехфазных сетях каждая из линий маркируется еще и соответствующей цифрой (L1, L2 и L3).

Действующие отечественные нормативы, регулирующие обозначение фазы и нуля в электрике (ГОСТ Р 50462-2009), предписывают помещать линейные жилы в коричневую или черную изоляцию. Хотя на практике фазные провода могут быть белыми, розовыми, серыми и т.п. В таком случае все зависит от производителя и изолирующего материала.

Проводники на печатных платах

Как вы знаете, все схемы состоят из проводов или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье «самый простой усилитель звука«, я с помощью проводов соединял различные радиоэлементы, и у меня получилась схема, которая усиливала звуковые частоты.

Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают «проводки», которые уже называются «печатными дорожками».

В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология). 

На другой стороне печатной платы уже располагаются радиоэлементы

Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому, в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.

Промышленные печатные платы уже делают многослойными. Они состоят из слоев, как торт из коржей:

Бум  SMD  технологий вызвал в свою очередь нужду в многослойных печатных платах.

Особенности разделения PEN проводника

В частных домах и в городских квартирах в целях исключения воровства электроэнергии представители контролирующей организации вправе требовать, чтобы провод PEN был протянут до счетчика. И лишь после учетного прибора они разрешают разделять его на защитную шину PE и рабочую N. Такое подключение не противоречит требования ПУЭ, но гораздо естественней смотрится разделение, выполненное до счетчика.

Если сначала сделать разделение, а потом опломбировать вводной автомат, никаких возражений со стороны представителей «Энергосбыта» и инспекторов быть не может.

  • Как определить обрыв электропроводки в стене под штукатуркой
  • Источники питания для светодиодных светильников — расчет и схемы
  • Виды и технические характеристики ответвительных коробок

Зачем гадать и переводить с иностранного буквенное обозначение систем распределения электроэнергии, когда расшифровка приводится в ПУЭ (см. п. 1.7.3). Причём, расшифровка буквы Т разная, зависит от того какая буква Т по счёту в аббревиатуре. Из той же расшифровки можно понять, что защитное заземление проводящих корпусов электрооборудования используется только в системах IT и TT. А это редко используемые системы, особенно система IT. В основном для питания потребителей используют систему TN (TN-C, TN-C-S, TN-S). Это система с глухозаземлённой нейтралью трансформатора, где проводящие электрический ток корпуса электрооборудования электрически присоединяются к глухозаземлённой нейтрали трансформатора, т.е. зануляются (выполняется защитное зануление; см. ПУЭ, п. 1.7.31). Защитное зануление никто ещё не отменял и его определение (что это такое) есть в ПУЭ. Вывод: в системах TN заземление корпусов не используется совсем в виду его бесполезности (при пробое изоляции на корпус не обеспечивает безопасный ток через человека). Основная мера защиты в системах TN это автоматическое отключение питания, которое как раз и обеспечивается защитным занулением. Дополнительная мера защиты – применение УЗО. Поэтому никаких договоров с соседями и устройств заземляющих контуров делать не надо, всё уже сделано как надо. Единственное, что можно сделать, это преобразовать систему TN-C (у кого такая) в систему TN-C-S. Но здесь также используется зануление.

{SOURCE}

Использование в других операционных системах[ | ]

Формат PE также используется ReactOS, поскольку ReactOS предназначена для того, чтобы быть двоично совместимой с Windows на уровне а. Кроме того, он исторически использовался многими другими операционными системами, включая SkyOS и BeOS R3. Однако и SkyOS, и BeOS в конечном счёте перешли на формат ELF.

Поскольку платформа разработки Mono намеревается быть двоично совместимой с Microsoft .NET, она использует тот же формат PE, что и в реализации Microsoft.

На платформе x86 в Unix-подобных операционных системах некоторые двоичные файлы Windows (в формате PE) могут быть исполнены с помощью Wine. HX DOS Extender также использует формат PE для собственных 32-разрядных двоичных файлов DOS, кроме того, может в некоторой степени выполнить существующие двоичные файлы Windows в DOS, действуя, таким образом, как Wine для DOS.

Mac OS X 10.5 имеет возможность загружать и интерпретировать PE-файлы, однако они не являются двоично совместимыми с Windows.

Что такое нулевой провод?

Нулевой провод — это проводник, который соединен с заземленной частью трансформатора.
Если однофазные нагрузки (220В) потребителей, распределены неравномерно, то в системе возникнет так называемое напряжение смещения нейтрали (перекос фаз), которое вызовет несимметрию напряжений нагрузки. Это может привести к тому, что часть потребителей, будет иметь пониженное напряжение, а часть повышенное. Повторные заземления «нуля», позволяют снизить перекос фаз и выровнять фазные напряжения, отводят часть грозовых и коммутационных перенапряжений, обеспечивают время срабатывания автоматов защиты(которое регламентируется нормативными документами) и т.п.
Помимо выполнения защитных функций, заземление нуля может дополнительно быть функциональным для некоторых видов оборудования загородного дома —
например некоторых марок энергозависимых газовых котлов. Электроника отдельных, так называемых фазозависимых моделей, считает ситуацию с появлением потенциала на нулевом проводе относительно земли, как аварийную и отключает оборудование. Эти же фазозависимые газовые котлы не работают от переносных генераторов без нулевого провода — в которых присутствуют две фазы по 110В.

Если рассматривать аварийную ситуацию на ВЛ, например обрыв или прогорание нулевого провода, то отсутсвие или несоответствие (повторных заземлений ВЛ) нормативам, может привести к непредсказуемым последствиям для потребителей.

Определение PEN (совмещенный нулевой рабочий и защитный проводник) «появилось», когда для повышения уровня электробезопасности в электроустановках жилых и общественных зданий, был введен в действие первый из комплекса стандартов ГОСТ Р 50571.1 (дата введения 01.01.95) на базе нормативов МЭК (Международная электротехническая комиссия).
Комплекс новых стандартов внедрил «Типы систем заземления» для электроустановок напряжением до 1 кВ,  где каждая система является общей характеристикой питающей электрической сети и электроустановки здания. В главе 1.7 ПУЭ 7-го издания (2002г.) дана классификация электроустановок в отношении применяемых систем заземления.
В настоящее время электросети частных домов, дач, которые запитаны от ВЛ — относятся (по ряду причин) к системам заземления TN-С, TN-C-S или ТТ.
Систему ТТ рассматривать не будем (другая тема).
Система заземления TN-С ещё осталась во многих загородных домах старой застройки, где не проводилась реконструкция электропроводки.
В связи с тем, что система TN-С запрещена для однофазных потребителей в новом строительстве и при реконструкции электросетей зданий (это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии — 1.7.132) — её тоже рассматривать не будем.

 У электроустановок с типом системы заземления TN-C-S нейтраль питающей линии (PEN) раделяется на нулевой рабочий проводник (N) и нулевой защитный (PE), а линии групповой сети, прокладываемые от групповых щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ проводники).
В системе TN-C-S все открытые проводящие части эктроустановки имеют непосредственную связь с точкой заземления трансформаторной подстанции.
В соответствии с п.1.7.102 на вводах ВЛ к таким электроустановкам должны быть выполнены повторные заземления — сопротивления которых нормируются.

Для обеспечения электробезопасности, должен быть выполнен комплекс требований, как к заземлению, так и к электропроводке дома, указанных в главах ПУЭ
(гл.1.7 и гл.7.1)..

Эти требования взаимосвязаны и их частичное выполнение может привести неблагоприятным последствиям.

Система TN и ее подсистемы, их особенности, достоинства, недостатки

Общая особенность системы TN сводится к тому, что нейтраль источника питания имеет глухое заземление (подключено к заземляющему контуру, установленному рядом с подстанцией).

К этому заземлению и подключаются открытые участки электрической проводки посредством нулевых проводников.

Имеющиеся подсистемы как раз и разделяются по способу подключения этих проводников к заземлению.

TN-C.

Система TN-C – один из самых распространенных видов заземления, который на данный момент является уже устаревшим, но часто встречается в домах старых построек.

Она отличается тем, что проводники N и PЕ (рабочий и защитный), объединены в единый по всей системе – PEN-проводник.

Широкое распространение эта система получила благодаря простоте монтажа и экономичности, поскольку не требует укладки и подключения дополнительных проводов. Это и является ее основными достоинствами.

Но в этой системе не предусмотрено отдельное защитное заземление. То есть, на конечной точке электропроводки жилого дома – розетке, оно отсутствует, что значительно понижает безопасность использования электроприборов в жилье.

Присутствующий же в системе PEN-проводник подводится только к электрощитам – вводному и этажному.

Из-за этих конструктивных особенностей при монтаже новых линий электросетей, а также реконструкции, уже существующих запрещено использовать данную систему.

Для повышения безопасности нередко используется зануление, позволяющее бороться с короткими замыканиями, которые могут возникнуть в сети.

Если замыкание произойдет, зануление обеспечит срабатывание автоматических выключателей для обесточивания электросети дома.

TN-S.

В новых постройках система TN-C уже не применяется, для них более предпочтительна система TN-S.

Она характеризуется тем, что рабочий и защитный нулевой проводники – раздельны по всей системе. То есть, проводка включает в себя отдельно N и PE-проводники.

Эта система отличается обеспечением высокой степени безопасности человека и защиты оборудования и электроприборов, поскольку защитное заземление имеют даже конечные точки электросети.

К тому же, в ней не образовываются высокочастотные помехи, которые могут возникать в первой системе во время использования пылесоса, дрели и прочих электроприборов.

К достоинствам этой системы также относится отсутствие надобности в периодической проверке состояния контура заземления.

При этом стоимость прокладки такой системы очень высокая. Обусловлено это тем, что при монтажных работах необходимо укладывать многожильные кабели.

Для однофазной сети кабель должен содержать 3 жилы (фазная, рабочая нулевая N и защитная PE).

А для трехфазной – кабель нужен уже 5-жильный (3 фазных – А, В, С, а также N и РЕ).

Именно высокая стоимость и является основным недостатком этой системы.

TN-C-S.

Последняя подсистема – TN-C-S объединяет в себе конструктивные особенности двух предыдущих систем.

Основное ее отличие заключается в том, что от подстанции на жилой дом идет PEN-проводник. Но на определенном этапе производится его разделение на рабочий N-проводник и защитный РЕ-проводник.

Обычно разделение делается на вводно-распределительном устройстве (ВРУ), то есть, на входе в дом.

При этом после разделения для PE-проводника делается повторное заземление, путем соединения его с заземляющим контуром дома.

После расщепления к квартирным щиткам уже подводится раздельные нулевые проводники, что позволяет создать защитное заземление на конечных точках сети. То есть, получается, что до ВРУ идет система TN-C, а после него – уже TN-S.

Такая система достаточно перспективная у нас, поскольку позволяет быстро и с небольшими затратами модернизировать систему TN-C, тем самым значительно повысив безопасность при использовании бытовыми электроприборами.

Но есть у нее и один недостаток, который сводится к тому, что в случае повреждения PEN-проводника, проводка полностью лишается заземления, что может привести к поражению электрическим током, поскольку корпусы электроприборов могут оказаться под напряжением.

Применение

О применении защитных проводников, наиболее ёмко, на мой взгляд, написал Харечко Ю.В. в своей книге :

Далее приводятся конкретные примеры использования защитных проводников в различных системах.

В системах TN-S переменного и постоянного тока, как, например, показано на рисунках 1А и 1Б соответственно, защитные проводники «начинаются» от заземленных токоведущих частей источников питания.

Рис. 1А. Система TN-S трехфазная четырехпроводная с разделенными нейтральным проводником и защитным проводником во всей системе (на основе рисунка 31А1 из ГОСТ 30331.1-2013)

Рис. 1Б. Система TN-S постоянного тока трехпроводная (на основе рисунка 31H из ГОСТ 30331.1-2013)

В системах TN-C-S переменного тока, как, например, показано на рисунке 2А защитные проводники «начинаются» от точек разделения РЕN-проводников на защитные и нейтральные проводники. В системах TN-C-S переменного тока защитные проводники могут также «начинаться» от точек разделения РЕL-проводников на защитные и фазные проводники (см. рисунок 2Б.

В системах TN-C-S постоянного тока, как показано на рисунке 2В, защитные проводники «начинаются» от точек разделения РЕL-проводника на защитный и полюсный проводники и РЕM-проводника на защитный и средний проводники.

Рис. 2А. Система TN-C-S трехфазная четырехпроводная, в которой PEN-проводник разделен на защитный проводник PE и нейтральный проводник N где-то в электроустановке (на основе рисунка 31B1 из ГОСТ 30331.1-2013)

Рис. 2Б. Система TN-C-S однофазная двухпроводная с разделением PEL-проводника на заземленный линейный проводник и защитный проводник для части электроустановки (на основе рисунка 2 из книги Харечко Ю.В.)

Рис. 2В. Система TN-C-S постоянного тока трехпроводная (на основе рисунка 31K из ГОСТ 30331.1-2013)

В системах TT (рисунки 3А и 3Б) и IT переменного и постоянного тока (рисунок 4) защитные проводники «начинаются» от заземляющих устройств низковольтных электроустановок.

Рис. 3А. Система TT трехфазная четырехпроводная с заземленным защитным проводником и нейтральным проводником во всей системе (на основе рисунка 31F1 из ГОСТ 30331.1-2013)

Рис. 3Б. Система TT постоянного тока трехпроводная (на основе рисунка 31L из ГОСТ 30331.1-2013)

Рис. 4. Система IT постоянного тока трехпроводная (на основе рисунка 31M из ГОСТ 30331.1-2013)

Как найти нуль и фазу

В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.

Проверка с помощью электролампы

Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.

Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.

Электролампа

Обратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Индикаторная отвертка

Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.

Пример исправной индикаторной отвертки

Как правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:

  1. Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
  2. Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
  3. Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).

Отвертка с изолированным жалом

В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей. Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.

Мультиметр

В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.

Пример мультиметра

Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде. Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов. Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.

Сечение

Сечение защитного проводника выбирают по таблице 54.2 из ГОСТ Р 50571.5.54-2013 : Минимальная площадь поперечного сечения защитных проводников (когда не рассчитывают в соответствии с 543.1.2 ГОСТ Р 50571.5.54-2013/МЭК 60364-5-54:2011)

Сечение медных линейных проводников S, мм2 Минимальное сечение соответствующего защитного проводника, выполненного, мм2
из меди из других металлов
S ≤ 16 S (k1/k2)*S
16 < S ≤ 35 161) (k1/k2)*16
S > 35 S/21) (k1/k2)*(S/2)
k1 — значение коэффициента k для линейного проводника, рассчитанного по формуле приложения А.54.1 ГОСТ Р 50571.5.54 или взятого из таблицы 43А ГОСТ Р 50571.4.43-2012 в соответствии с материалом проводника и изоляции. Если материал проводника медь, то k1 = 226, если алюминий, то k1 = 148, если сталь, то k1 = 78.

k2 — значение коэффициента k для защитного проводника, выбранного из таблиц A.54.2-A.54.6 ГОСТ Р 50571.5.54 в соответствии с условиями применения.

1) Для PEN-проводника, уменьшение сечения возможно только при выполнении ограничений по выбору сечения нейтрального проводника (см. ГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009)

Либо рассчитывают в соответствии с пунктом 543.1.2 ГОСТ Р 50571.5.54-2013. Сечение защитных проводников должно быть не менее чем :

  • сечения, выбранного в соответствии с указаниями МЭК 60949;
  • или сечения, рассчитанного по нижеследующей формуле, применяют только при времени отключения сверхтока не более 5 с.

Где

  • S — сечение, мм2 ;
  • I — действующее значение ожидаемого тока замыкания на землю для повреждения с пренебрежимо малым полным сопротивлением, который может протекать через защитное устройство (см. МЭК 60909-0), А;
  • t — время отключения защитным устройством тока замыкания на землю (тока повреждения), с;
  • k — коэффициент, зависящий от материала защитного проводника, изоляции, прилегающих частей, начальной и конечной температуры.

Коэффициент k в данном случае должно выбираться по таблицам A.54.2-A.54.6 , либо рассчитываться по следующей формуле:

  • Qc — объемная теплоемкость материала проводника при 20 °С, Дж/°С·мм3;
  • β — величина, обратная температурному коэффициенту удельного сопротивления проводника при 0 °C, °C;
  • ρ20 — удельное электрическое сопротивление материала проводника при 20 °C, Ом·мм;
  • θf — конечная температура проводника, °C;
  • θi — начальная температура проводника, °C.
Материал проводника β, °C Qc , Дж/°С·мм3 ρ20, Ом·мм
Медь 234,5 3,45·10-3 17,241·10-6
Алюминий 228 2,5·10-3 28,264·10-6
Сталь 202 3,8·10-3 138·10-6

Значения параметров для различных материалов (из таблицы A.54.1 ГОСТ Р 50571.5.54-2013) Если в результате расчетов получено нестандартное сечение, следует использовать защитный проводник с ближайшим большим стандартным сечением.

Примечания к этому пункту:

1) Следует учитывать токоограничение за счет импеданса цепи и ограничение I2t аппаратом защиты.

2) Указания по ограничению температуры во взрывоопасных средах приведены в МЭК 60079-0.

3) Для кабелей с минеральной изоляцией (МЭК 60702-1) в случае, когда стойкость к току короткого замыкания металлической оболочки кабеля больше, чем у линейных проводников, не требуется рассчитывать сечение металлической оболочки, используемой в качестве защитного проводника.

Важно! В соответствии с пунктом 543.1.3 ГОСТ Р 50571.5.54-2013 сечение любого защитного проводника, который не является жилой кабеля или не проложен в общей оболочке с линейными проводниками, должно быть не менее:

  • 2.5 мм2 (медь) или 16 мм2 (алюминий) , если есть механическая защита;
  • 4 мм2 (медь) или 16 мм2 (алюминий), если механическая защита отсутствует.

То есть, другими словами:

При этом, защитный проводник, не являющийся частью кабеля, считается механически защищенным, если он проложен в трубе, коробе или другим подобным способом.

Если защитный проводник является общим для двух или более цепей, то его сечение выбирают следующим образом :

  • рассчитывают в соответствии с 543.1.2 ГОСТ Р 50571.5.54-2013, исходя из максимально ожидаемого тока замыкания на землю и времени отключения в этих цепях;
  • или выбирают по таблице 54.2 ГОСТ Р 50571.5.54-2013 для наибольшего сечения линейного проводника, входящего в состав этих цепей.
Понравилась статья? Поделиться с друзьями:
Стильный дом
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: