Схемы соединений обмоток треугольник и звезда для чайников.
Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье.
Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная. На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю. В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).
Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)
При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх — проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)
Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное. Но что касается электрического тока, то в этом случае фазный ток равен линейному, т.к. что линейный, что фазный токи одинаково выходят из обмотки, и другого пути у него нет. Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.
Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)
В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой
последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.
Подведем итоги. Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.
Выбор схемы соединения обмоток зависит от ряда причин:
- Схемы питания трансформатора
- Мощности трансформатора
- Уровня напряжения
- Асимметрии нагрузки
- Экономических соображений
Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.
На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.
Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.
Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.
Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.
Чем трехфазное напряжение отличается от однофазного
Современные жилые дома и абсолютное большинство промышленных предприятий подключены к сети по трёхфазной четырёхпроводной схеме электропитания.
Согласно новым стандартам для повышения безопасности потребителей к ним добавляется пятый заземляющий проводник, который используется только в аварийной ситуации и служит не для подачи напряжения, а для защиты от поражения электрическим током.
Все проводники в трёхфазной сети имеют своё обозначение:
- L1, L2, L3 — линейные (фазные) провода, по которым подаётся напряжение;
- N или PEN — рабочая нейтраль, служащая для соединения потребителей с глухозаземлённой нейтралью трансформатора;
- РЕ — защитное заземление.
В такой схеме электроснабжения имеется две величины напряжения:
- Линейное. Измеряется между двумя линейными проводами и достигает 380 В. На трансформаторных подстанциях и РП оно обозначается 0,4 кВ. Для него необходимы четыре проводника — три питающих L1, L2, L3 и нейтраль N, по которой протекает уравнительный ток.
- Фазное. Измеряется между одним из линейных проводников и нейтралью. Оно составляет 220 В. Именно оно необходимо для большинства бытовых электроприборов и подаётся в квартиру по двум проводам — фаза L и нейтраль N.
Однофазное напряжение является частным случаем трехфазного напряжения и получается при подключении потребителя к фазному и нейтральному проводам. Многоквартирные дома и гаражные кооперативы подключаются к четырёхпроводной трёхфазной сети (с заземляющим проводом РЕ пятипроводной), а к отдельным потребителям подводятся только два провода.
Для частных домов и дач это разделение выполняется на линии электропередач, от которых отходит два или три провода. Третий проводник в бытовой электропроводке заземляющий (защитный) и не участвует в питании электроприборов.
Важно! При обрыве нейтрального проводника напряжение в розетке может колебаться от 0 до 380 В, что пагубно влияет на электроприборы. Это так же относится к электродвигателям, включённым в трёхфазную сеть
Для защиты от выхода аппаратуры из строя желательно установить реле напряжения РН, отключающее питание в аварийной ситуации.
Однако основное отличие между трёхфазной и однофазной сетями не в величине напряжения и количестве проводов. Главная особенность трёхфазной сети заключается в том, что напряжение в питающих проводниках сдвинуто относительно друг друга на 120°.
Какое освещение Вы предпочитаете
ВстроенноеЛюстра
Этот сдвиг обеспечивается расположением обмоток в генераторах на электростанции и необходим для обеспечения вращающего момента в электродвигателях. Кроме того, сдвиг фаз позволяет уменьшить сечение нейтрального провода.
В трёхфазной сети по нему протекает не полный ток нагрузки, а только уравнительные токи, которые тем меньше, чем равномернее потребители распределены по отдельным фазам.
Совет! В качестве пусковых допускается применять электролитические конденсаторы. |
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Братание с трехфазным трансформатором » Журнал практической электроники Датагор Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства. Спрашивайте, я на связи!
Соединение треугольником
Соединение вторичных обмоток в трехфазном трансформаторе треугольником будет выдавать одинаковое линейное и фазное напряжение, как и при соединении звездой, если напряжение составит 220 В. При одинаковом значении потребляемой мощности, линейные токи будут превышать фазные в √3 раза.
Трехфазная система напряжений представляет собой симметричную схему. Это означает, что и магнитная система, которую имеют все трехфазные трансформаторы, будет симметричной. Такая система очень сложная в изготовлении, поэтому широкое распространение получила плоская конструкция, в которой отсутствует центральный стержень. Необходимость в нем отпадает, поскольку сумма магнитных потоков здесь равна нулю.
Плоский вариант конструкции считается более технологичным и удобным при компоновке, хотя она и является несимметричной. Токи в крайних фазах заметно превышают ток в средней фазе, из-за чего нарушаются фазовые углы. Для ликвидации такой асимметрии сечение в верхнем и нижнем ярме увеличивается примерно на 10-15% по сравнению со стержнем. Однако, несмотря на принятые меры, некоторая асимметрия все равно остается.
Таблица групп соединений
В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.
Группа соединения | Обозначение |
Чередование фаз |
Y/Y-0 | C, B, A | |
c, b, a | ||
∆/∆-0 | C, B, A | |
c, b, a | ||
1 | Y/∆-1 | C, B, A |
c, b, a | ||
∆/Y-1 | C, B, A | |
c, b, a | ||
2 | Y/Y-2 | C, B, A |
c, b, a | ||
∆/∆-2 | C, B, A | |
а, c, b | ||
3 | Y/∆-3 | C, B, A |
b, a, с | ||
∆/Y-3 | C, B, A | |
b, a, с | ||
4 | Y/Y-4 | C, B, A |
b, a, с | ||
∆/∆-4 | C, B, A | |
b, a, с | ||
5 | Y/∆-5 | C, B, A |
c, b, a | ||
∆/Y-5 | C, B, A | |
c, b, a | ||
6 | Y/Y-6 | C, B, A |
c, b, a | ||
∆/∆-6 | C, B, A | |
c, b, a | ||
7 | Y/∆-7 | C, B, A |
c, b, a | ||
∆/Y-7 | C, B, A | |
c, b, a | ||
8 | Y/Y-8 | C, B, A |
а, c, b | ||
∆/∆-8 | C, B, A | |
c, b, a | ||
9 | Y/∆-9 | C, B, A |
b, a, с | ||
∆/Y-9 | C, B, A | |
b, a, с | ||
10 | Y/Y-10 | C, B, A |
c, b, a | ||
∆/∆-10 | C, B, A | |
b, a, с | ||
11 | Y/∆-11 | C, B, A |
c, b, a | ||
∆/Y-11 | C, B, A | |
c, b, a |
Виды намотки
- Винтовая обмотка идет спирально с каналами охлаждения маслом. В силовых трехфазных трансформаторах применяются для низких напряжений. Между слоями ставится прокладка.
- Непрерывная обмотка получила название за способ: одним куском медного провода наматывается множество обмоток. Часто внешний виток кладут первым, после выполняется перекладка.
- Переплетенная обмотка, благодаря переплетению соседних витков характеризуется большой механической прочностью.
- Цилиндрическая слоевая обмотка напоминает винтовую, витки кладутся впритык без промежуточных каналов для охлаждения.
- Дисковая катушечная обмотка схожа с непрерывной, отличие ограничено дополнительной изоляцией, накладываемой отдельно для каждой катушки. Отличается большой механической прочностью.
В чем отличие трехфазного напряжения от однофазного
Питание всех бытовых потребителей осуществляется по четырём проводам от трёхфазной сети — три фазных (линейных) L1, L2 и L3 и один нейтральный (нулевой) проводник N, а в квартиры подводится однофазное напряжение, для которого необходимы только два проводника — нулевой и фазный.
Переменное напряжение в разных фазах сдвинуто относительно друг друга на 120° для получения вращающегося магнитного поля в электродвигателях и уменьшения тока в нейтральном проводе.
Кроме количества проводников у трёхфазной сети имеются и другие особенности:
- Напряжение в сети. В однофазной схеме есть только одна величина напряжения — между фазой L и нейтралью N, а в трёхфазной сети имеется два напряжения, отличающиеся по своему значению. Это фазное L-N, равное 220 Вольт, и линейное, между любыми двумя фазными проводами L1-L2, L2-L3 или L1-L3, равное 380 Вольт. Поэтому один из способов, как из 380 сделать 220 Вольт, это просто подключить электроприбор к нулю и фазе.
- Различное сечение проводов. В однофазной электропроводке все провода имеют одинаковое сечение и рассчитываются на полный ток потребителя, а в трёхфазной сети по нейтральному проводнику протекает только уравнительный ток. Из-за этого нейтральная жила имеет меньшее сечение по сравнению с фазными, но при этом нагрузку по фазам необходимо распределять максимально равномерно.
- Разное количество полюсов у автоматических выключателей. В однофазной сети достаточно отключать только фазный проводник, поэтому допускается установка однополюсного автомата (кроме вводного). В трёхфазной нужно отключать все фазы одновременно, из-за чего необходима установка трёхполюсного выключателя.
Как увеличить передачу энергии
Увеличить передачу электроэнергии по контуру питающий провод-рельсы можно путем установки на подстанциях специальных повышающих автотрансформаторов, мощность которых соответствует нагрузке плеча питания подстанции, или специальным включением на подстанции двух стандартных трехфазных трансформаторов.
Группа соединения У/Д-1 у второго трансформатора получена одноименной двойной перемаркировкой выводов двух фаз первичной и тяговой обмоток стандартного трансформатора. Обозначение выводов вторичной обмотки по заводской маркировке показано на рисунке с индексом «Т».
С рельсами, как и в системе 25 кВ, соединен один и тот же вывод тяговой обмотки обоих трансформаторов (вывод ст по заводской маркировке). Соединение с рельсами вывода ст определяет, что наименее нагруженными у обоих трансформаторов будут обмотки на среднем стержне.
По аналогии с трехфазными трансформаторами в системе 25 кВ в случае присоединения провода к выводу ат имеем положительное напряжение этого провода относительно рельсов, а к выводу Ьт — отрицательное напряжение провода относительно рельсов.
Схема питания тяговой сети системы 2×25 кВ при последовательном соединении двух фаз трехфазных трансформаторов (а), векторные диаграммы напряжений первичных и вторичных обмоток (б).
Первый трансформатор присоединен выводом ат к контактной сети первой фидерной зоны, а выводом Ьт к контактной сети второй фидерной зоны.
Второй трансформатор имеет обратное присоединение: выводом ят он присоединен к питающему проводу второй фидерной зоны, а выводом Ьт — к питающему проводу первой фидерной зоны.
Последовательное включение двух вторичных обмоток трансформаторов с группами соединения обмоток У/Д-11 и У/Д-1 позволяет получить удвоенное напряжение двух фаз, питающих тяговую сеть по разные стороны от подстанции.
Будет интересно Чем отличаются трансформаторы напряжения от трансформаторов тока
Как и выше, у контактной сети и питающего провода, а указаны напряжения питающей линии, с которыми совпадают по фазе напряжения контактной сети и питающего провода. Последние сдвинуты на 180°. Поэтому под рисунком показано положение только напряжений контактная сеть—рельсы. Оно не отличается от положения этих векторов в системе 25 кВ, если в системе 2×25 кВ трансформатор, подключенный к контактной сети, присоединен к тем же фазам питающей линии, что и в системе 25 кВ.
Трансформация трехфазных токов и напряжений. Устройство трехфазного трансформатора.
⇐ ПредыдущаяСтр 4 из 36Следующая ⇒
Трансформирование электроэнергии трехфазного тока можно осуществить тремя однофазными трансформаторами или одним трехфазным трансформатором. На каждом из трех стержней трансформатора размещается по две обмотки, принадлежащие одной фазе, одна из которых является первичной, а другая – вторичной (рис. 1). Начала первичных обмоток обозначаются большими буквами А, В, С, а их концы X, Y, Z; для вторичных обмоток их начала обозначаются малыми буквами а, в, с
, а концы –x,y, z. Физические процессы, происходящие в каждой фазе трехфазного трансформатора, ничем не отличаются от аналогичных в однофазном трансформаторе; следовательно, векторная диаграмма однофазного трансформатора может рассматриваться как диаграмма одной фазы трехфазного трансформатора.
Схемы и группы соединения трехфазных трансформаторов.
Обмотки трехфазных трансформаторов могут соединяться по схемам «звезда» или «треугольник». Если соединенная «звездой» обмотка имеет выведенную нейтральную точку, то к знаку «звезды» приписывается значок ноль. Схема соединений обмоток трансформатора обозначается в виде дроби, в числителе которой указан способ соединения первичной обмотки, а в знаменателе – вторичной обмотки. Например «звезда»/ «треугольник» — первичная обмотка соединена «звездой» с выводом нейтрали, а вторичная обмотка соединена «треугольником» (рис.1, а).векторная диаграмма напряжений первичной и вторичной обмотки приведена на рис. 1, б.
Чтобы условно обозначить угол сдвига фаз между одноименными векторами линейных напряжений первичных и вторичных обмоток, принято деление трансформаторов по группам соединения обмоток
Рис.1. Трехфазный трансформатор:
а – схема соединения; б – векторная диаграмма.
Для обозначения группы соединения трехфазного трансформатора положение векторов линейных напряжений первичной и вторичной обмоток сопоставляют с положением стрелок часов. Вектор линейного напряжения первичной обмотки совмещают с минутной стрелкой, когда она стоит на цифре 12, а вектор линейного напряжения вторичной обмотки с часовой стрелкой, положение которой определяет номер группы (1, 2, 3, … (12) 0).
Схемы соединений «звезда» и «треугольник» могут иметь 12 различных групп со сдвигом фаз линейных напряжений 0֯…330֯ через каждые 30֯. Большое разнообразие групп соединений не удобно для эксплуатации, поэтому число различных схем и групп соединений ограничено тремя: «звезда»/ «звезда»-0 (наиболее распространенное соединение); «звезда»/ «треугольник»-11; «звезда» с выводом нейтрали/ «тругольник»-11.
Числа 0 и 11 указывают группу соединений трансформаторов, сдвиг фаз которых 0 и 330֯.
Коэффициент трансформации трехфазного трансформатора при соединении «звезда»/ «звезда» вычисляется как отношение линейных напряжений, при соединении «звезда»/ «треугольник» как отношение фазных напряжений.
Автотрансформатором.
Автотрансформаторы являются самостоятельными приборами класса трансформаторов. В отличие от силовых двухобмоточных трансформаторов они имеют одну обмотку для высоко и низкого напряжений. При этом обмотка низкого напряжения является частью обмотки высокого напряжения. Поэтому обмотки имеют не только магнитную связь, но и гальваническую; следовательно энергия передается двумя путями: через гальваническую связь и магнитную. Однофазный понижающий трансформатор изображен на рис. 1.
Рис 1. Схема однофазного понижающего трансформатора.
Высокое напряжение подведено к обмотке, имеющей витков, из которых витков являются обмоткой низкого напряжения.При разомкнутой вторичной обмотке устанавливаются ток холостого хода, равный . Магнитодвижущая сила , создаваемая этим током, индуцирует ЭДС в первичной и вторичной обмотках автотрансформатора по закону электромагнитной индукции . Тогда коэффициент трансформации
что равно коэффициенту трансформации обычного трансформатора. При включении нагрузки во вторичной цепи протекает ток , который создает МДС. Тогда магнитный поток в сердечнике
Отсюда видно, что ток в общей части обмотки значительно меньше, так как автотрансформаторы имеют коэффициент трансформации 1
⇐ Предыдущая4Следующая ⇒
Рекомендуемые страницы:
Область применения
Данные устройства предназначены для преобразования эксплуатационных параметров трехфазных электросетей и используются в энергосистемах следующих типов:
- системы транспортирования и распределения электроэнергии;
- преобразовательные устройства;
- электротехнологические установки (сварочная аппаратура, электропечи и т.п.);
- устройства связи и телемеханики;
- системы автоматики;
- бытовая электроаппаратура;
- электроизмерительные устройства.
Подходящую схему соединения определяют в соответствии с условиями работы прибора, к которым относятся мощность сети, уровень напряжения, асимметричность нагрузки. На выбор схемы соединения влияют также и экономические соображения.
Основные 5 схем обмоток для трехфазного трансформатора
Но ни один трансформатор не может содержать исключительно определенный вид обмотки. Поэтому для трехфазных типов трансформаторов применяются конкретные групповые схемы. Есть всего 5 самых распространенных схем. Они идентифицируются латинскими буквами, которые обозначают вид обмотки (описаны выше), и цифрами, обозначающими сдвиги по фазе. Дополнительно могут вводиться латинские буквы N и n, которые обозначают вывод нейтрального зажима для первичной и вторичной обмоток соответственно на клеммные части.
Соединение обмоток для трансформаторных установок вида Yd, например, как на рис. 1, используется для повышающих трехфазных установок. Если первичная и вторичная обмотки будут соединены посредством треугольника, то гармоника всех токов будет течь по замкнутой цепочке, а магнитный поток будет почти полностью отсутствующим, что очень выгодно. Можно сделать первичную обмотку методом звезды. Но ее нейтральная часть обязательно должна быть надежно заземлена дросселем. Это тоже считается очень удобным.
Рисунок 2. Схема соединения обмоток типа Dy.
Схема типа Dy применяется в основном для понижающих типов трансформаторов, имеющих большую мощность. Пример такой схемы показан на фото (рис. 2). Это очень хорошо, особенно в условиях асимметричных нагрузок, так как нейтральная часть будет позволять использование одновременно и фазного, и линейного типов напряжения за счет хорошего своего заземления. Оптимально использовать эту схему обмотки для трансформаторов, которые работают от сети с низким напряжением.
Соединение обмоток силовых трансформаторов по типу Dz и Yz применяется для понижающих типов установок, основная мощность которых совсем низкая. Здесь обычно в качестве основного используется соединение посредством зигзага, а его нейтральная точка выводится на клеммную колодку для использования напряжений через фазы. Но часто вместо зигзага используют форму звезды. Это делается только по той причине, что звезда подразумевает меньшее количество используемой меди для обмотки, что дает возможность экономить.
Эти два вида хорошо использовать, когда в одной части трансформатора необходимо распределить напряжения симметрично. Во всех остальных случаях их использовать не рекомендуется, так как может просто снизиться уровень работы прибора.
Еще одной самой распространенной схемой для трехфазного трансформатора принято считать схему по типу Yy. Ее пример показан на рис. 3. Она подразумевает использование исключительно обмотки по типу звезды. Она не самая удобная, однако успешно используется для трансформаторов, имеющих не очень большую номинальную мощность. Приходится сталкиваться с необходимостью компенсировать влияние высших гармоник тока.
Для нейтрализации целесообразно дополнительно вводить компенсационную обмотку по типу треугольника
Это особенно важно, если в трансформаторе кроме треугольника применяется еще звезда, дающая нейтральную точку
Назначение и строение трехфазного трансформатора
Определение 1 Трехфазный трансформатор – это статический аппарат, который предназначен для преобразования напряжения в процессе передачи электрического тока на значительные расстояния.
Основная функция трехфазного трансформатора заключается в передаче электрической энергии на большие расстояния. Электрическая энергия переменного тока вырабатывается на электростанциях. При ее передаче возникают потери на нагрев проводов. Для того, чтобы снизить их, напряжение увеличивают до значения, находящегося в диапазоне от 6 до 500 кВ. Значение увеличения напряжения зависит от расстояния до конечного потребителя и передаваемой мощности, состоящей из двух параметров:
Готовые работы на аналогичную тему
- Курсовая работа Трехфазный трансформатор 480 руб.
- Реферат Трехфазный трансформатор 250 руб.
- Контрольная работа Трехфазный трансформатор 220 руб.
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
- Напряжение.
- Сила тока.
Среди характеристик, которые оказывают влияние на потери, связанных с нагревом проводов, основной является сила тока. Если уменьшать силу тока, то необходимо увеличивать напряжение, так как в этом случае значение мощности практически не будет меняться. При доставке напряжения потребителям, его снижают до нужного значения. Таким образом основная задача трехфазного трансформатора состоит в в увеличении напряжения до передачи электрической энергии и снижении после.
Элементы, из которых состоит трехфазный трансформатор, делятся на основные части и дополнительную аппаратуру. К основным частям относятся: выводы, вводы, магнитопровод, бак, а также обмотки высокого и низкого напряжения. К дополнительной аппаратуре относятся: выхлопная труба, пробивной предохранитель, расширительный бак, приборы контроля и сигнализации, выхлопная труба, изоляторы, заливное отверстие, охлаждающие трубы и т.п.
Магнитопровод предназначен для крепления всех составляющих. Вторая его функция состоит в создании направления движения основного магнитного потока. В зависимости от крепления обмоток к сердечнику, магнитопровод может быть трех видов: стержневой, броневой и бронестержневой. Очень важным элементом трехфазного трансформатора является масло, которое используется в устройствах средней и большой мощности. Его основные функции — увеличение изоляции и охлаждение обмоток. Пример схемы трансформатора изображен на рисунке ниже.
Требуется вычитка, рецензия учебной работы? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос
Рисунок 1. Схема трансформатора. Автор24 — интернет-биржа студенческих работ
1 — магнитопровод; 2,3 — обмотки высокого и низкого напряжения; 4 — бак с трансформаторным маслом; 5,6 — изоляторы; 7 — переключатель; 8 — охлаждающие трубы; 9 — расширительный бачок; 10 — измеритель уровня масла; 11 — заливное отверстие.
Немного из истории
Изобретение трансформаторов начиналось ещё в 1876 году великим русским учёным П.Н. Яблоковым. Его изделие не имело замкнутого сердечника, он появился позже – в 1884 году. И с появлением прибора учёные активно стали интересоваться переменным током.
Например, уже в 1889 году М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый трёхфазный асинхронный двигатель и трансформатор. Через два года была представлена презентация трёхфазной высоковольтной линии протяженностью 175 км, где успешно повышалась и понижалась электроэнергия.
Чуть позже появились масляные агрегаты, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.
Назначение и виды
Трехфазный трансформатор Классический станционный трехфазный силовой трансформатор используется для преобразования высоковольтной энергии в удобную для потребителя форму. На его первичные обмотки подается высокое напряжение (6,3-10 киловольт), а на выходе получают более удобные для использования в быту 220 Вольт. Эта величина измеряется между фазами и нулевой жилой трансформатора, называемой нейтралью. Ее принято обозначать как фазное напряжение, в отличие от линейных 380 Вольт, отсчитываемых между каждой из фаз.
Трехфазные понижающие трансформаторы этого класса обеспечивают передачу тока от местной подстанции по подземному кабелю или линии электропередач непосредственно до конечного потребителя. Для этих целей используется специальный 4-хжильный кабель в бронированном сердечнике, либо воздушный провод марки СИП. По ним электрическая энергия доставляет прямо по назначению — на вводно-распределительные устройства обслуживаемых территорий и объектов.
По своему функциональному назначению 3 фазные трансформаторы подразделяются на следующие классы:
- линейные (станционные) устройства;
- специальные преобразовательные агрегаты.
Особо выделяются трехфазные разделительные трансформаторы, используемые для развязки электрических схем и силовых цепей.
Испытательный трансформатор Специальные устройства делятся на следующие виды:
- Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
- Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
- Симметрирующие трансформаторные агрегаты.
Первые два типа применяются в исследовательских целях. Трансформаторы симметрирующие трехфазные используются для устранения перекоса фаз, возникающего в электрических сетях из-за неравномерности распределения нагрузок.
Меры безопасности
Основные правила безопасности при преобразовании энергии:
- Необходимо работать только с проверенными и технически исправными приборами во избежание короткого замыкания или пожара;
- Минимальная мощность в приборах должна быть больше 400 Вт для корректного преобразования напряжения;
- В процессе преобразования необходимо пользоваться мультиметром, для того чтобы отслеживать результат;
- В щитке необходимо установить устройство защитного отключения, чтобы при скачках напряжения бытовые приборы не вышли из строя;
- При работе по подключению все помещения должны быть обесточены, а щиток отключен;
- Если на проводах есть скрутки, то их необходимо заменить, чтобы они не закоротили в процессе работы;
- Не должно быть оголенной изоляции в проводах, так как при соприкосновении может случиться короткое замыкание или электротравмы.
Вам это будет интересно Электрическое поле и его характеристики
Особенности работы трехфазного трансформатора в однофазной сети
Трехфазные трансформаторы являются одними из наиболее широко используемых устройств в электросетях. Они предназначены для преобразования электрической энергии в трехфазных системах передачи. Однако, в некоторых случаях, трехфазные трансформаторы могут быть подключены и использованы в однофазных сетях. В этой статье рассмотрим особенности работы трехфазного трансформатора в однофазной сети.
Однофазная сеть, в отличие от трехфазной, имеет только одну активную фазу и обычно используется для маломощных потребителей. Подключение трехфазного трансформатора в однофазную сеть происходит с помощью специальной схемы включения, называемой «глухой звездой». В этой схеме одна из фаз подсоединяется к двум обмоткам трансформатора, а другие две фазы остаются не подключенными.
Однако, следует отметить, что использование трехфазного трансформатора в однофазной сети имеет свои особенности и некоторые ограничения. Ниже приведены основные особенности работы такого трансформатора в однофазной сети:
- Неравномерность нагрузки: поскольку в однофазной сети используется только одна фаза, нагрузка на трансформатор будет неравномерной. Это может привести к неравномерному распределению тока через обмотки трансформатора и нагреву некоторых его участков.
- Снижение эффективности: поскольку трехфазный трансформатор не используется в полной мощности в однофазной сети, его эффективность может быть ниже, чем в трехфазной сети.
- Несимметричность напряжений: в однофазной сети может возникать несимметрия напряжений на обмотках трансформатора, что может повлиять на его работу и снизить эффективность.
- Дисбаланс нагрузки: из-за неравномерности нагрузки в однофазной сети может возникать дисбаланс нагрузки на трансформаторе, что может привести к его перегрузке и снижению срока службы.
Важно отметить, что подключение трехфазного трансформатора в однофазную сеть должно проводиться в соответствии с инструкциями и рекомендациями производителя, чтобы избежать возможных повреждений и неисправностей. Таким образом, использование трехфазного трансформатора в однофазной сети требует особого внимания к его работе и возможных ограничений
Правильное подключение и эксплуатация такого трансформатора позволит обеспечить его надежную и эффективную работу в однофазной сети
Таким образом, использование трехфазного трансформатора в однофазной сети требует особого внимания к его работе и возможных ограничений. Правильное подключение и эксплуатация такого трансформатора позволит обеспечить его надежную и эффективную работу в однофазной сети.
Конструкция и принцип действия
Конструктивно первичную катушку 3-х обмоточного силового трансформатора обычно располагают в середине между двумя вторичными, чтобы ослабить влияние обмоток между собой. Если нулевой вывод заземляется, то она называется «глухозаземленной», в ином случае именуют «обмоткой с изолированной нейтралью».
При подобном расположении напряжение КЗ между обмотками ВН и СН минимально. Это позволяет снизить потери мощности при передаче в сеть СН. Одновременно значение напряжения КЗ между ВН и НН относительно большое, что ограничивает силу тока короткого замыкания в сети НН низшего напряжения.
3-х обмоточные преобразователи переменного напряжения нашли широкое применение в силовой энергетике. В маркировке изделий они обозначаются третьей буквой «Т» в буквенно-цифровом коде. Очень часто требуется иметь третье более низкое, чем U2 значение для подачи менее мощным электроприемникам или, расположенным вблизи подстанций, потребителям электроэнергии.
Стандартными условиями эксплуатации изделий считается температура не выше 35ºС и влажность воздуха ≤65%, обеспечиваемые в отапливаемом помещении. Товарные позиции этого типа изготовляются как для нужд народного хозяйства, так и экспортируются в страны с умеренным/ тропическим климатом.
На понижающих подстанциях для раздельного питания электрических сетей в радиусе 10–15 км задействуют электротехнические изделия с выходными параметрами 6–10 кВ, а в радиусе до 50-60 км применяют 35 кВ трансформаторы. 3-х обмоточные преобразователи только с более низким значением параметров используется в измерительной технике и радиотехнике, автоматике и средствах релейной защиты.