Падение напряжения по длине кабеля

Что называется падением напряжения на участке цепи

Работа электрического поля

Электрическое поле, оказывая силовое воздействие на заряды, сообщает им дополнительную энергию, то есть совершает работу. В процессе этой работы происходит превращение энергии электрического поля в другие виды энергии — механическую, внутреннюю (тепловую), световую (электромагнитное излучение).

Рис. 1. Преобразование электрической энергии в другие виды энергии.

Отношение работы А, совершенной электрическим полем по перемещению положительного заряда из одной точки поля в другую, к величине заряда q называется электрическим напряжением U между этими точками:

$ U = { А \over q } $ (1).

Так как заряд измеряется в кулонах, то, следовательно, электрическое напряжение равно работе по перемещению заряда величиной в 1 кулон из одной точки поля в другую.

Величина работы, совершенной электрическим полем, будет равна:

$ А = q * U $ (2).

Электрическое поле также, как и гравитационное, является потенциальным. Поэтому работа, совершенная в процессе перемещения заряда из одной точки в другую не зависит от траектории, по которой произошло перемещение. Отсюда следует важный вывод — при перемещении электрического заряда по произвольной замкнутой траектории работа, произведенная силами электрического поля равна нулю.

Рис. 2. Связь между напряженностью электростатического поля и потенциалом.

Как пользоваться таблицей выбора сечения?

Пользоваться таблицей 2 очень просто. Например, нужно запитать некое устройство током 10А и постоянным напряжением 12В. Длина линии — 5 м. На выходе блока питания можем установить напряжение 12,5 В, следовательно, максимальное падение — 0,5В.

В наличии — провод сечением 1,5 квадрата. Что видим из таблицы? На 5 метрах при токе 10 А потеряем 0,1167 В х 5м = 0,58 В. Вроде бы подходит, учитывая, что большинство потребителей терпит отклонение +-10%.

Но. ПрОвода ведь у нас фактически два, плюс и минус, эти два провода образуют кабель, на котором и падает напряжение питания нагрузки. И так как общая длина — 10 метров, то падение будет на самом деле 0,58+0,58=1,16 В.

Иначе говоря, при таком раскладе на выходе БП 12,5 Вольт, а на входе устройства — 11,34. Этот пример актуален для питания светодиодной ленты.

И это — не учитывая переходное сопротивление контактов и неидеальность провода («проба» меди не та, примеси, и т.п.)

Поэтому такой кусок кабеля скорее всего не подойдет, нужен провод сечением 2,5 квадрата. Он даст падение 0,7 В на линии 10 м, что приемлемо.

А если другого провода нет? Есть два пути, чтобы снизить потерю напряжения в проводах.

1. Надо размещать источник питания 12,5 В как можно ближе к нагрузке. Если брать пример выше, 5 метров нас устроит. Так всегда и делают, чтобы сэкономить на проводе.

2. Повышать выходное напряжение источника питания. Это черевато тем, что с уменьшением тока нагрузки напряжение на нагрузке может подняться до недопустимых пределов.

Например, в частном секторе на выходе трансформатора (подстанции) устанавливают 250-260 Вольт, в домах около подстанции лампочки горят как свечи. В смысле, недолго. А жители на окраине района жалуются, что напряжение нестабильное, и опускается до 150-160 Вольт. Потеря 100 Вольт! Умножив на ток, можно вычислить мощность, которая отапливает улицу, и кто за это платит? Мы, графа в квитанции «потери».

Как уменьшить падение напряжения и снизить потери в кабеле

Можно снизить количество потерь, уменьшив сопротивление на всем участке электросети. Экономию дает способ повторного заземления нуля на каждой опоре линии электропередач.

Стоимость электроснабжения линией большой протяженности, выбранной по допустимому падению напряжения, больше выбора, выполненного по нагреву кабеля. Все же есть возможность снизить эти расходы.

  • Усилить начальный потенциал питающего кабеля, подключив его к отдельному трансформатору.
  • Добиться постоянных величин напряжения в сети можно с помощью установки стабилизатора возле нагрузки.
  • Подключение потребителей с низкими нагрузками 12–36 В выполняют через трансформатор или блок питания.

Чем длиннее кабель линии электропередач, тем большее сопротивление возникает при прохождении по нему тока. Очевидно, что потери напряжения также выше. Снизить их можно, комбинируя способы между собой.

  • Снизить расходы увеличением сечения питающего кабеля. Но этот метод потребует больших финансовых вложений.
  • При разработке линий энергоснабжения следует выбирать максимально короткий путь, так как прямая линия всегда короче ломаной.
  • При снижении температуры сопротивление металлов уменьшается. Вентилируемые кабельные лотки и другие конструкции снижают потери в линии.
  • Уменьшение нагрузки возможно, если есть много источников питания и потребителей.

Экономию дает должное содержание и профилактика электросетей – проверка плотности и прочности контактов, использование надежных клеммников.

Нормативные ссылки:

ПУЭ 7-го издания.
Уровни и регулирование напряжения, компенсация реактивной мощности.

1.2.22. Для электрических сетей следует предусматривать технические мероприятия по обеспечению качества электрической энергии в соответствии с требованиями ГОСТ 13109.

1.2.23. Устройства регулирования напряжения должны обеспечивать поддержание напряжения на шинах напряжением 3-20 кВ электростанций и подстанций, к которым присоединены распределительные сети, в пределах не ниже 105 % номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок этих сетей. Отклонения от указанных уровней напряжения должны быть обоснованы.

1.2.24. Выбор и размещение устройств компенсации реактивной мощности в электрических сетях производятся исходя из необходимости обеспечения требуемой пропускной способности сети в нормальных и послеаварийных режимах при поддержании необходимых уровней напряжения и запасов устойчивости.

Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы: 

  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения δUу на выводах приемников электрической энергии равны соответственно ± 5 и ± 10% от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);
  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии.

РД 34.20.185-94
Инструкция по проектированию городских электрических сетей.
Гл. 5.2 Уровни и регулирование напряжения, компенсация реактивной мощности

5.2.4. Предварительный выбор сечений проводов и кабелей допускается производить исходя из средних значений предельных потерь напряжения в нормальном режиме: в сетях 10(6) кВ не более 6 %, в сетях 0,38 кВ (от ТП до вводов в здания) не более 4-6 %.

Большие значения относятся к линиям, питающим здания с меньшей потерей напряжения во внутридомовых сетях (малоэтажные и односекционные здания), меньшие значения — к линиям, питающим здания с большей потерей напряжения во внутридомовых сетях (многоэтажные многосекционные жилые здания, крупные общественные здания и учреждения).

СП 31-110-2003
Проектирование и монтаж электроустановок жилых и общественных зданий.
7. Схемы электрических сетей.

7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5 %, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках — ±10 %. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10 %.

Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15 %.

С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5 %. Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ГОСТ Р 50571.15-97 (МЭК 364-5-52-93). Электроустановки зданий.
Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки.
525. Потери напряжения в электроустановках зданий.

МЭК 60364-7-714-1996, IEC 60364-7-714 (1996). Электрические установки зданий.
Часть 7. Требования к специальным установкам или помещениям.
Раздел 714. Наружные осветительные установки.

в свободном переводе автора статьи:

714.512. Падение напряжения в нормальных рабочих условиях должно быть совместимо с условиями, возникающими от пускового тока ламп.

РД 34.20.501-95
Правила технической эксплуатации электрических станций и сетей РФ.
5. Электрическое оборудование электростанций и сетей.

ГОСТ Р МЭК 60204-1-99 (МЭК 60204-1). Безопасность машин.
Электрооборудование машин и механизмов. Общие требования.
13 Кабели и провода. 13.5 Падение напряжения на проводах

РМ 2559
Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.

Варианты определения ΔU

Метод векторов

В ходе проектирования электрической сети в основе лежит нагрузка, работоспособность которой необходимо обеспечить. Если кабель будет выбран неправильно, ΔU на нем не позволит правильно работать этой нагрузке. Асинхронные двигатели не достигнут заданных оборотов, трансформаторы на вторичных обмотках не обеспечат номинальные напряжения и т.д., и т.п. Для однофазной сети нагрузка разделяется на активную и реактивную составляющие.

Трехфазная сеть представляется как три самостоятельные однофазные сети. Они называются схемами замещения. Этот метод обеспечивает достаточно точные результаты, если нагрузка симметрична. Если симметрия нарушается, то анализ причин, которые этот процесс вызвали, также можно выполнить, используя этот метод. На основании известных величин можно построить векторную диаграмму и, меняя длину векторов соответственно поставленной задаче, определять те величины, которые необходимы.

Схема 1

Например, известны параметры, которые необходимы для нормальной работы нагрузки. Параметры линии также известны. Следовательно, задача сводится к определению векторного напряжения U1. Шаги, приводящие к появлению искомого вектора, показаны далее.  

Схема 2

Длина вектора и его направление определяются исходя из закона Ома и направления вектора напряжения, определяющего ток (векторы тока и напряжения по направлению совпадают). Вектор напряжения, который получается как результат сложения активной и реактивной составляющих нагрузки (IR+IХ), – это и есть ΔU в линии, соединяющей источник напряжения U1 с нагрузкой. Из полученных векторов просто получить также и потери напряжения. Для этого векторы U1 и U2 совмещаются так, чтобы направление обоих было таким же, как у вектора U2. Разница между ними в длине – это будут потери напряжения.

Схема падения и потери напряжения

Определение ΔU и потерь напряжения

Таблицы Кнорринга

Но заниматься построением векторов довольно-таки нудно. Тем более что за время существования потребности в проектировании электросетей для стандартных ситуаций придуманы решения более быстрые. К ним относятся таблицы Кнорринга. Стандартность ситуации для них состоит в постоянстве напряжения на входе кабеля или иного проводника (переменное напряжение с действующим значением 220 В)

Это важно как для одной фазы, так и для трех фаз. То есть в трехфазной электросети нагрузка должна быть симметричной. Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах)

Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов

Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах). Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов.

Таблица 1

Таблица 2

Таблица 3

Для всех таблиц принято ограничение – жилы должны быть из меди. Если читателю встретится такое определение, как момент нагрузки, – это как раз и будет число из таблицы Кнорринга для провода, соответствующее произведению мощности на длину.

Точные расчеты по формулам

Если по тем или иным причинам метод векторов и таблицы не устраивают, можно использовать либо формулы, показанные далее, либо калькулятор онлайн, на них основанный. Таких калькуляторов в сети немало, и найти подходящий несложно.

Расчет по формулам ΔU по длине кабеля

Вольт-амперная характеристика полупроводникового диода

Вольт-амперная характеристика полупроводникового диода состоит из прямой и обратной ветви. Расположены они в I и в III квадрантах, так как направление тока и напряжения через диод всегда совпадают. По вольт-амперной характеристике можно определить некоторые параметры, а также наглядно увидеть, на что влияют характеристики прибора.

Напряжение порога проводимости

Если к диоду приложить прямое напряжение и начать его увеличивать, то в первый момент ничего не произойдет – ток расти не будет. Но при определенном значении диод откроется, и ток будет увеличиваться в соответствии с напряжением. Это напряжение называется напряжением порога проводимости и на ВАХ отмечено, как Uпорога. Оно зависит от материала, из которого изготовлен диод. Для самых распространенных полупроводников этот параметр составляет:

  • кремний – 0,6-0,8 В;
  • германий – 0,2-0,3 В;
  • арсенид галлия – 1,5 В.

Свойство германиевых полупроводниковых приборов открываться при малом напряжении используется при работе в низковольтных схемах и в других ситуациях.

Максимальный ток через диод при прямом включении

После того, как диод открылся, его ток растет вместе с увеличением прямого напряжения. Для идеального диода этот график уходит в бесконечность. На практике этот параметр ограничен способностью полупроводникового прибора рассеивать тепло. При достижении определенного предела диод перегреется и выйдет из строя. Чтобы этого избежать, производители указывают наибольший допустимый ток (на ВАХ – Imax). Его можно приблизительно определить по размеру диода и его корпусу. В порядке убывания:

  • наибольший ток держат приборы в металлической оболочке;
  • на среднюю мощность рассчитаны пластиковые корпуса;
  • диоды в стеклянных оболочках используются в слаботочных цепях.

Металлические приборы можно устанавливать на радиаторах – это увеличит мощность рассеяния.

Обратный ток утечки

Если приложить к диоду обратное напряжение, то малочувствительный амперметр ничего не покажет. На самом деле только идеальный диод не пропускает никакого тока. У реального прибора ток будет, но он очень мал, и называется обратным током утечки (на ВАХ – Iобр). Он составляет десятки микроампер или десятые доли миллиампер и намного меньше прямого тока. Определить его можно по справочнику.

Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

Напряжение пробоя

При определенном значении обратного напряжения возникает резкий рост тока, называемый пробоем. Он носит туннельный или лавинный характер и является обратимым. Этот режим используется для стабилизации напряжения (лавинный) или для генерации импульсов (туннельный). При дальнейшем увеличении напряжения пробой становится тепловым. Этот режим необратим и диод выходит из строя.

Паразитическая ёмкость pn-перехода

Уже упоминалось, что p-n переход обладает электрической ёмкостью. И если в варикапах это свойство полезно и используется, то в обычных диодах оно может быть вредным. Хотя ёмкость составляет единицы или десятки пФ и на постоянном токе или низких частотах незаметна, с повышением частоты её влияние возрастает. Несколько пикофарад на ВЧ создадут достаточно низкое сопротивление для паразитных утечек сигнала, сложатся с существующей ёмкостью и изменят параметры цепи, а совместно с индуктивностью вывода или печатного проводника образуют контур с паразитным резонансом. Поэтому при производстве высокочастотных приборов принимают меры для снижения ёмкости перехода.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования

Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения

Базовые формулы определения напряжения

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

Значение Формула
Базовый расчёт напряжения на участке цепи U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
Определение напряжения в цепи переменного тока U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

Значение Формула
Расчет сопротивления одного элемента R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
Расчет для однородного проводника R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Справочник электрика. Потери напряжения, мощности и энергии

Основной причиной появления отклонений напряжения в электрической сети являются потери напряжения в линиях электропередачи и силовых трансформаторах

, причем, главное значение имеют потери напряжения в линиях. На рис. 1, а приведены электрическая схема, включающая в себя источник питания С и две подстанции, связанные линией W без ответвлений. Здесь U1 — напряжение в начале, U2 — в конце линии.

Векторная диаграмма электрических величин для линии W, построенная на основе ее схемы замещения (рис. 1, б), приведена на рис. 1, в. Обычно нагрузка линии имеет активно-индуктивный характер, поэтому вектор тока İ отстает по фазе от вектора напряжения Ú2 конца линии на угол φ. Вектор напряжения в начале линии Ú1, получается в результате суммирования вектора напряжения в конце линии Ú2 с активной ΔÚwa =İR и реактивной ΔÚwp = jİX составляющими падения напряжения на линии İZw, где R, jX, Z — соответственно активное, индуктивное и полное сопротивления линии.

Модуль (длину) вектора İZw называют падением напряжения на линии

. Вектор падения напряжения на линии можно разложить на две составляющие:

направленную по вектору Ú2 — продольную составляющую падения напряжения ΔÚw;

направленную перпендикулярно вектору Ú2 — поперечную составляющую падения напряжения δÚw.

Рис. 1. Потеря напряжения в линии

Из точки 0 на рис. 1, в радиусом, равным длине вектора 0, можно провести дугу окружности до пересечения в точке b с прямой Оα (по направлению вектора Ú2). Отрезок 0b равен модулю вектора Ú1 т. е. напряжению в начале линии. Потеря напряжения в линии равна длине отрезка cb, т. е. арифметической разности U1 – U2 Для упрощения потерю напряжения вычисляют приближенно и полагают ее равной не отрезку cb, а отрезку cd. Ошибка, получающаяся в результате такой замены, относительно невелика и допустима в расчетах. Тогда можно получить следующее выражение для потери напряжения в линии:

где Р, Q — соответственно, активная Р и реактивная Q мощности нагрузки в конце линии; U2 — напряжение в конце линии.

Таким образом, нужно различать падение напряжения и потерю напряжения

на линии.Падение напряжения — это модуль геометрической разности векторов напряжения по концам линии

|ΔÚw| = |Ú1 — Ú2|.

Потеря напряжения

— это арифметическая разность напряжений по концам линии, т. е. ΔUw = U1 — U2.

Потеря напряжения показывает, насколько напряжение в конце линии отличается от напряжения в ее начале. Падение напряжения обычно больше потери напряжения из-за сдвига по фазе векторов Ú1 и Ú2. Практику в ГРС интересует потеря напряжения, а не падение напряжения, потому что потеря напряжения связывает наиболее простой формулой напряжения в начале и конце линии.

Понравилась статья? Поделиться с друзьями:
Стильный дом
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: